共计 19226 个字符,预计需要花费 49 分钟才能阅读完成。
学习笔记
https://www.bilibili.com/vide…
记忆化递归
fib
个别实现
const fib = n => {if (n === 1 || n === 2) return 1
return fib(n - 1) + fib(n - 2)
}
console.log(fib(6))
console.log(fib(7))
console.log(fib(8))
console.log(fib(50)) // 卡住了
这样的递归会在每次都计算一次, 造成屡次调用屡次
优化
咱们考虑一下如何优化这个过程
思考一个简化版的模型, 咱们的察看一个这样的函数
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424212442.png” alt=”image-20210424212441886″ style=”zoom: 33%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424212528.png” alt=”image-20210424212528537″ style=”zoom:33%;” />
当咱们递归两次的时候
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214021.png” alt=”image-20210424214021162″ style=”zoom:25%;” />
所以咱们之前的 fib 工夫复杂度是
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214105.png” alt=”image-20210424214105560″ style=”zoom:25%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214124.png” alt=”image-20210424214124868″ style=”zoom:25%;” />
这真是太蹩脚了
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214204.png” alt=”image-20210424214203954″ style=”zoom:33%;” />
带有记忆的遍历就是 dp
// memoization
// js obj, keys: arg, value returns
// 批改 1 设置 memo 和初始值
const fib = (n, memo = {}) => {
// 批改 2 查看是否有记忆
if (n in memo) return memo[n]
if (n === 1 || n === 2) return 1
// 批改 3 递归的时候带上咱们的援用
memo[n] = fib(n - 1, memo) + fib(n - 2, memo)
return memo[n]
}
console.log(fib(6))
console.log(fib(7))
console.log(fib(8))
console.log(fib(50)) // 很快就出后果了
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424214945.png” alt=”image-20210424214945777″ style=”zoom: 33%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215111.png” alt=”image-20210424215111089″ style=”zoom: 33%;” />
旅行者 gridTraveler
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215247.png” alt=”image-20210424215247677″ style=”zoom: 33%;” />
咱们从极简模式开始剖析
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215420.png” alt=”image-20210424215420703″ style=”zoom: 25%;” />
其实这也是一种边界状况
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215509.png” alt=”image-20210424215509651″ style=”zoom:25%;” />
简略状况
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215956.png” alt=”image-20210424215956243″ style=”zoom: 25%;” />
每挪动一步, 问题将会简化
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220036.png” alt=”image-20210424220036796″ style=”zoom: 25%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220109.png” alt=”image-20210424220109627″ style=”zoom:25%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220123.png” alt=”image-20210424220123824″ style=”zoom:25%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424220129.png” alt=”image-20210424220129754″ style=”zoom:25%;” />
所以咱们能够这样想这个问题
具象化的了解就是
递归版
const gridTraveler = (m, n) => {if (m === 1 && n === 1) return 1
if (m === 0 || n === 0) return 0
return gridTraveler(m - 1, n) + gridTraveler(m, n - 1)
}
console.log(gridTraveler(1,2))
console.log(gridTraveler(3,2))
console.log(gridTraveler(3,3))
console.log(gridTraveler(18,18))
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424221012.png” alt=”image-20210424221012313″ style=”zoom: 25%;” />
dp 版
const gridTraveler = (m, n, memo = {}) => {const key = `${m}+${n}`
if (key in memo) return memo[key]
if (m === 1 && n === 1) return 1
if (m === 0 || n === 0) return 0
memo[key] = gridTraveler(m - 1, n, memo) + gridTraveler(m, n - 1, memo)
return memo[key]
}
console.log(gridTraveler(1, 2))
console.log(gridTraveler(3, 2))
console.log(gridTraveler(3, 3))
console.log(gridTraveler(18, 18))
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424225418.png” alt=”image-20210424225417863″ style=”zoom:25%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424225436.png” alt=”image-20210424225436220″ style=”zoom: 33%;” />
这类问题的总结
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426082533.png” alt=”image-20210426082533672″ style=”zoom: 33%;” />
胜利最小后果和失败最小后果
canSum
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426082650.png” alt=”image-20210426082650351″ style=”zoom: 50%;” />
逆向思维: 求和到定值 -> 应用定值遍历数组减到 0
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426083039.png” alt=”image-20210426083039761″ style=”zoom:50%;” />
递归
我的解法
const canSum = (targetSum, numbers) => {if (targetSum === 0) return true
if (targetSum < 0) return false
let remainder
for (let num of numbers) {remainder = remainder || canSum(targetSum - num, numbers)
}
return remainder
}
console.log(canSum(7, [3, 2]))
console.log(canSum(7, [4, 2]))
console.log(canSum(7, [5, 6, 2]))
console.log(canSum(300, [7, 14]))
视频解法
const canSum = (targetSum, numbers) => {if (targetSum === 0) return true
if (targetSum < 0) return false
for (let num of numbers) {if (canSum(targetSum - num, numbers)) return true
}
return false
}
视频解法递归次数更少
dp
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426084656.png” alt=”image-20210426084655947″ style=”zoom: 33%;” />
const canSum = (targetSum, numbers, memo = {}) => {if (targetSum in memo) return memo[targetSum]
if (targetSum === 0) return true
if (targetSum < 0) return false
for (const num of numbers) {memo[targetSum] = canSum(targetSum - num, numbers, memo)
if (memo[targetSum]) return true
}
return false
}
console.log(canSum(7, [3, 2]))
console.log(canSum(7, [4, 2]))
console.log(canSum(7, [5, 6, 2]))
console.log(canSum(300, [7, 14]))
howSum
递归版
const howSum = (targetSum, numbers) => {if (targetSum === 0) return []
if (targetSum < 0) return null
for (const num of numbers) {
const remainder = targetSum - num
const remainderResult = howSum(remainder, numbers)
if (remainderResult !== null) return [...remainderResult, num]
}
return null
}
console.log(howSum(7, [3, 2]))
console.log(howSum(7, [4, 2]))
console.log(howSum(7, [5, 6, 2]))
console.log(howSum(300, [7, 14]))
dp 版
const howSum = (targetSum, numbers, memo = {}, path = []) => {if (targetSum in memo) return memo[targetSum]
if (targetSum === 0) return []
if (targetSum < 0) return null
for (const num of numbers) {
const remainder = targetSum - num
const remainderResult = howSum(remainder, numbers, memo)
if (remainderResult !== null) {memo[targetSum] = [...remainderResult, num]
return memo[targetSum]
}
}
memo[targetSum] = null // 不可达也须要记录
return memo[targetSum]
}
console.log(howSum(7, [3, 2]))
console.log(howSum(7, [4, 2]))
console.log(howSum(7, [4, 3, 2]))
console.log(howSum(7, [5, 6, 2]))
console.log(howSum(300, [7, 14]))
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210426093959.png” alt=”image-20210426093958932″ style=”zoom:33%;” />
bestSum
tips: 应用递归的思路
- 想好进口, 边界条件, 失败胜利条件
- 调用递归函数的时候要假如递归函数能获取到你想要的后果
递归版
const bestSum = (targetSum, numbers, lastBest) => {if (targetSum === 0) return []
if (targetSum < 0) return null
let shortestCombination = null
for (const num of numbers) {
const remainder = targetSum - num
const remainderCombination = bestSum(remainder, numbers)
if (remainderCombination !== null) {const combination = [...remainderCombination, num]
if (
shortestCombination === null ||
combination.length < shortestCombination.length
)
shortestCombination = combination
}
}
return shortestCombination
}
console.log(bestSum(7, [1, 3, 2, 7])) // [7]
console.log(bestSum(7, [1, 4, 2])) // [2,4,1]
console.log(bestSum(7, [1, 4, 3, 2])) // [3,4]
console.log(bestSum(7, [1, 5, 6, 2])) // [6, 1]
console.log(bestSum(100, [1, 2, 3, 14]))
dp 版
const bestSum = (targetSum, numbers, memo = {}) => {if (targetSum in memo) return memo[targetSum]
if (targetSum === 0) return []
if (targetSum < 0) return null
let shortestCombination = null
for (const num of numbers) {
const remainder = targetSum - num
const remainderCombination = bestSum(remainder, numbers, memo)
if (remainderCombination !== null) {const combination = [...remainderCombination, num]
if (
shortestCombination === null ||
combination.length < shortestCombination.length
)
shortestCombination = combination
}
}
memo[targetSum] = shortestCombination
return memo[targetSum]
}
console.log(bestSum(7, [1, 3, 2, 7])) // [7]
console.log(bestSum(7, [1, 4, 2])) // [2,4,1]
console.log(bestSum(7, [1, 4, 3, 2])) // [3,4]
console.log(bestSum(7, [1, 5, 6, 2])) // [6, 1]
console.log(bestSum(100, [1, 2, 3, 5, 10, 40])) //[40, 40, 10, 10]
这三个问题的总结
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210428202031.png” alt=”image-20210428202030984″ style=”zoom:50%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210428202122.png” alt=”image-20210428202122564″ style=”zoom:50%;” />
canConstruct
很显然, 这和 canSum 是一类问题
寻找这个问题的边界条件, 也就是递归终止条件, 一直缩小字符的长度, 直到为空即可, 失败就是残余的字符的子字符不在 wordbank 外面
问题来了 1. 如何存储曾经匹配的字符? 如何判断以后字符曾经不能再被匹配了?
递归版
我的实现(谬误版)
每次胜利匹配后, 就宰割字符串, 顺次查问取后果的和运算后果, 当字符串是空为胜利后果, 循环完了没有符合条件, 有一个宰割后的子串不能满足状况的是失败后果
const canConstruct = (target, wordBank) => {if (target === '') return true
for (const word of wordBank) {if (target.indexOf(word) !== -1) {
return target
.split(word, 2)
.reduce((pre, targetStr) => pre && canConstruct(targetStr, wordBank),
true
)
}
}
return false
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'Dog', 'Vs']))
认真想一下, 这个有一个很大的问题, 就是程序匹配到第一个宰割点后间接返回, 没有查看第二个宰割点是否还能满足条件
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))// 本该为 true, 输入 false
所以作出这样的批改
const canConstruct = (target, wordBank) => {if (target === '') return true
return wordBank.reduce((pre, word) => {if (target.indexOf(word) !== -1) {
return (
pre ||
target
.split(word, 2)
.reduce((pre, targetStr) => pre && canConstruct(targetStr, wordBank),
true
)
)
}
return pre
}, false)
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
这样就能够解决那个问题了, 然而这样又有一个不太好的中央就是, 不能见好就收, 找到 pre 是 true 的时候就可停下来了, 所以, 咱们能够应用 some 来代替, some 在返回 true 的时候会进行循环, 相似的 every 将会在返回 false 的时候跳出循环.
当然还能够应用 throw+trycatch 实现终止循环, 然而那样太奇怪了, 很反模式, 不过我还是实现了一下
some/every 优化版
const canConstruct = (target, wordBank) => {if (target === '') return true
console.log(target, wordBank)
return wordBank.some(
word =>
target.indexOf(word) !== -1 &&
target.split(word, 2).every(subStr => canConstruct(subStr, wordBank))
)
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
try-catch 版
看着就恶心
const canConstruct = (target, wordBank) => {if (target === '') return true
try {return wordBank.reduce((pre, word) => {if (pre === true) throw new Error(true)
if (target.indexOf(word) !== -1) {
return (
pre ||
target
.split(word, 2)
.reduce((pre, targetStr) => pre && canConstruct(targetStr, wordBank),
true
)
)
}
return pre
}, false)
} catch (e) {// console.log(typeof e.message)
// 留神这里会把 boolean 转成 string, 间接 return ture 就好了
return true
}
return false
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
视频的实现
咱们能够从左到右顺次查看是否是子串, 这样就能够省很多事件, 而且递归的时候能够不须要查看两边的是否都满足
这体现了一种转换的思路
const canConstruct = (target, wordBank) => {if (target === '') return true
for (const word of wordBank) {if (target.indexOf(word) === 0) {const suffix = target.slice(word.length)
if (canConstruct(suffix, wordBank) === true) return true
}
}
return false
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
之前忘了压力测试的用例了, 不必想, 必定都跑不完
console.log(
canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [
'e',
'ee',
'eee',
'eeee'
])
)
我的实现(正确版)
啊这, 过压力测试用例的时候, 发现: 应用 split 将会把每个 e 都宰割掉, 所以会失去 ['','']
的后果, 所以会错
所以须要实现一个只宰割一次的函数
const canConstruct = (target, wordBank) => {if (target === '') return true
return wordBank.some(
word =>
target.indexOf(word) !== -1 &&
splitOnce(target, word).every(subStr => canConstruct(subStr, wordBank))
)
}
// 只宰割一次的函数
const splitOnce = (str, sign) => {const index = str.indexOf(sign)
if (index === -1) return [str]
return [str.slice(0, index), str.slice(index + sign.length)]
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
console.log(
canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [
'ef',
'eeeeeeeeeee'
])
)
console.log(
canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [
'e',
'ee',
'eee',
'eeeeeeeeeee'
])
)
dp 版
我的实现
const canConstruct = (target, wordBank, memo = {}) => {if (target in memo) return memo[target]
if (target === '') return true
memo[target] = wordBank.some(
word =>
target.indexOf(word) !== -1 &&
splitOnce(target, word).every(subStr =>
canConstruct(subStr, wordBank, memo)
)
)
return memo[target]
}
const splitOnce = (str, sign) => {const index = str.indexOf(sign)
if (index === -1) return [str]
return [str.slice(0, index), str.slice(index + sign.length)]
}
视频实现
const canConstruct = (target, wordBank, memo = {}) => {if (target in memo) return memo[target]
if (target === '') return true
memo[target] = false
for (const word of wordBank) {if (target.indexOf(word) === 0) {const suffix = target.slice(word.length)
if (canConstruct(suffix, wordBank, memo) === true){memo[target] = true
return true
}
}
}
return memo[target]
}
countConstruct
递归版
我的实现
const countConstruct = (target, wordBank, counter = 0) => {if (target === '') return counter + 1
for (const word of wordBank) {if (target.indexOf(word) === 0) {const suffix = target.slice(word.length)
counter = countConstruct(suffix, wordBank, counter)
}
}
return counter
}
视频实现
const countConstruct = (target, wordBank) => {if (target === '') return 1
let counter = 0
for (const word of wordBank)
if (target.indexOf(word) === 0)
counter += countConstruct(target.slice(word.length), wordBank)
return counter
}
dp 版
const countConstruct = (target, wordBank, memo = {}) => {if (target in memo) return memo[target]
if (target === '') return 1
let counter = 0
for (const word of wordBank)
if (target.indexOf(word) === 0)
counter += countConstruct(target.slice(word.length), wordBank, memo)
memo[target] = counter
return memo[target]
}
我感觉我曾经挺纯熟了
allConstruct
递归版
我的实现
const allConstruct = (target, wordBank) => {const path = []
helper(target, wordBank, [], path)
return path
}
const helper = (target, wordBank, currentPath = [], path = []) => {if (target === '' && currentPath.length !== 0) {path.push([...currentPath])
}
for (const word of wordBank) {if (target.indexOf(word) === 0) {const preCur = [...currentPath] // key: 保留之前的状态, 每次获取子元素的子门路后还回去
currentPath.push(word)
helper(target.slice(word.length), wordBank, currentPath, path)
currentPath = preCur
}
}
}
说句实话我也不晓得我在写啥
视频实现
const allConstruct = (target, wordBank) => {if (target === '') return [[]]
const result = []
for (const word of wordBank) {if (target.indexOf(word) === 0) {const suffix = target.slice(word.length)
const suffixWays = allConstruct(suffix, wordBank)
const targetWays = suffixWays.map(way => [word, ...way])
result.push(...targetWays)
}
}
return result
}
dp 版
const allConstruct = (target, wordBank, memo = {}) => {if (target in memo) return memo[target]
if (target === '') return [[]]
const result = []
for (const word of wordBank) {if (target.indexOf(word) === 0) {const suffix = target.slice(word.length)
const suffixWays = allConstruct(suffix, wordBank, memo)
const targetWays = suffixWays.map(way => [word, ...way])
result.push(...targetWays)
}
}
memo[target] = result
return result
}
列表化 tabulation
勾销递归, 应用数组记录, 钻研每个之前状况对之后状况的影响
fib(nth)
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210504090006.png” alt=”image-20210504090006324″ style=”zoom:50%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210504090048.png” alt=”image-20210504090048196″ style=”zoom: 33%;” />
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210504090113.png” alt=”image-20210504090113448″ style=”zoom:25%;” />
const fib = n => {const table = Array(n + 1).fill(0) // 初始化
table[1] = 1 // 开始, 人工赋值
for (let i = 0; i < n; i++) {
// 每个格子会影响前面的两个格子
table[i + 1] += table[i]
table[i + 2] += table[i]
}
return table[n]
}
console.log(fib(6))
console.log(fib(7))
console.log(fib(8))
console.log(fib(50)) // 很快就出后果了
gridTraveler
<img src=”https://gitee.com/zjeff-953/picsBed/raw/master/image/20210424215247.png” alt=”image-20210424215247677″ style=”zoom: 33%;” />
const gridTraveler = (m, n) => {const table = Array(m + 1)
.fill() //undefined 不能 map
.map(() => Array(n + 1).fill(0)) // 间接 full 会指向雷同的援用
table[1][1] = 1
for (let i = 0; i <= m; i++) {for (let j = 0; j <= n; j++) {if (i + 1 <= m) table[i + 1][j] += table[i][j] // 二维数组左值边界查看
if (j + 1 <= n) table[i][j + 1] += table[i][j]
}
}
return table[m][n]
}
console.log(gridTraveler(3, 2))
这类问题的总结
- 布局你的 table 记录什么
- 找出你的 table 的 size , 维度
- 初始化 table 的值是多少
- 找到更新 table 的初值种子 (寻找那个和决定 / 随机 / 资源没有关系的状况 个别是 0 /1)
- 迭代更新 table
- 考查每个格子对将来的格子的影响
canSum
target 是 0 的时候, 肯定是 true
const canSum = (targetSum, numbers) => {const table = Array(targetSum + 1).fill(false)
table[0] = true
for (let i = 0; i <= targetSum; i++) {if (table[i] === true)
numbers.forEach(number => {table[number + i] = true
})
}
return table[targetSum]
}
console.log(canSum(7, [3, 2]))
console.log(canSum(7, [4, 2]))
console.log(canSum(7, [5, 6, 2]))
console.log(canSum(300, [7, 14]))
小哥陷入有限循环的问题: 不要时刻判断 length, 这样不好
howSum
const howSum = (targetSum, numbers) => {const table = Array(targetSum + 1).fill(null)
table[0] = []
for (let i = 0; i <= targetSum; i++) {if (table[i] !== null)
numbers.forEach(number => {table[number + i] = [...table[i], number]
})
}
return table[targetSum]
}
console.log(howSum(7, [3, 2]))
console.log(howSum(7, [4, 2]))
console.log(howSum(7, [5, 6, 2]))
console.log(howSum(300, [7, 14]))
bestSum
const bestSum = (targetSum, numbers) => {const table = Array(targetSum + 1).fill(null)
table[0] = []
for (let i = 0; i <= targetSum; i++) {if (table[i] !== null)
numbers.forEach(number => {if (!table[number + i] || table[number + i].length > table[i].length)
// 如果是 null 须要给予初值
table[number + i] = [...table[i], number]
})
}
return table[targetSum]
}
console.log(bestSum(7, [3, 2]))
console.log(bestSum(7, [4, 2]))
console.log(bestSum(7, [5, 6, 2]))
console.log(bestSum(300, [7, 14]))
canConstruct
const canConstruct = (target, wordBank) => {const table = Array(target.length + 1).fill(false)
table[0] = true
for (let i = 0; i <= target.length; i++) {if (table[i] === true)
wordBank.forEach(word => {if (target.slice(i, i + word.length) === word)
table[i + word.length] = true
})
}
return table[target.length]
}
console.log(canConstruct('', ['cat']))
console.log(canConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(canConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
console.log(canConstruct('CatVsDog', ['Cat', 'V', 's', 'Dog']))
console.log(
canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [
'ef',
'eeeeeeeeeee'
])
)
console.log(
canConstruct('eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeef', [
'e',
'ee',
'eee',
'eeeeeeeeeee'
])
)
countConstruct
const countSum = (target, wordBank) => {const table = Array(target.length + 1).fill(0)
table[0] = 1
for (let i = 0; i <= target.length; i++) {if (table[i] !== 0)
wordBank.forEach(word => {if (target.slice(i, i + word.length) === word)
table[i + word.length] += table[i]
})
}
return table[target.length]
}
console.log(countSum('', ['cat']))
console.log(countSum('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(countSum('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(countSum('CatVsDog', ['Cat', 's', 'Do']))
console.log(countSum('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
console.log(countSum('CatVsDog', ['Cat', 'V', 's', 'Vs', 'Dog']))
allConstruct
const allConstruct = (target, wordBank) => {const table = Array(target.length + 1)
.fill()
.map(() => [])
table[0] = [[]]
for (let i = 0; i < target.length; i++) {
wordBank.forEach(word => {if (target.slice(i, i + word.length) === word) {
// 对于以后格子的每个状况都须要进行后续单词的查看
const newCombinations = table[i].map(subArr => [...subArr, word])
// 减少而不是笼罩
table[i + word.length].push(...newCombinations)
}
})
}
return table[target.length]
}
console.log(allConstruct('', ['cat']))
console.log(allConstruct('CatVsDog', ['Cat', 'Vs', 'Dog']))
console.log(allConstruct('CatVsDog', ['at', 'Vs', 'Dog']))
console.log(allConstruct('CatVsDog', ['Cat', 's', 'Do']))
console.log(allConstruct('CatVsDog', ['Cat', 'VsD', 'Vs', 'Dog']))
console.log(allConstruct('CatVsDog', ['Cat', 'V', 's', 'Vs', 'Dog']))
总结
遇见 dp 问题:
- 留神到重叠的子问题
- 决定什么是最小的输出
- 想一下记忆化递归
- 想一下列表化问题
- 画一个策略, 树或者数组
Keep curious, keep learning
【Jeff 在写代码】无关代码的所有的所有