家喻户晓,Python 的利用是十分宽泛的,明天咱们就通过 matplotlib 库学习下如何制作精美的子弹图
什么是子弹图
一个子弹图约定俗成的定义
子弹图应用长度 / 高度、地位和色彩对数据进行编码,以显示与指标和性能带相比的理论状况
咱们先来看下子弹图大略张什么样子
子弹图具备繁多的次要度量(例如,以后年初至今的支出),将该度量与一个或多个其余度量进行比拟以丰盛其含意(例如,与指标相比),并将其显示在性能的定性范畴的背景,例如差、称心和好。定性范畴显示为繁多色调的不同强度,使色盲者能够分别它们,并将仪表板上的色彩应用限度在最低限度
好了,差不多这就是子弹图的利用场景和绘制规范了,上面咱们就开始制作吧
构建图表
思路大抵是,能够应用重叠条形图来示意各种范畴,并应用另一个较小的条形图来示意值,最初,用一条垂直线标记指标
能够看出,咱们须要多个组件图层,应用 matplotlib 来实现会比拟不便
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.ticker import FuncFormatter
%matplotlib inline
这里咱们还导入了 Seaborn,是因为 Seaborn 有一些十分有用的工具来治理调色板,利用这种性能比尝试以其余形式复制它更容易
咱们须要生成调色板的次要起因是咱们很可能心愿为各种定性范畴生成视觉上吸引人的配色计划,间接应用 seaborn 来实现会不便很多
在上面的例子中,咱们能够应用 palplot 便当函数来显示 5 种绿色色调的调板
sns.palplot(sns.light_palette("green", 5))
sns.palplot(sns.light_palette("purple",8, reverse=True))
以相同的程序制作 8 种不同深浅的紫色
咱们当初晓得了如何设置调色板,接下来让咱们应用 Matplotlib 依据下面列出的准则创立一个简略的子弹图
首先,定义咱们想要绘制的值
limits = [80, 100, 150]
data_to_plot = ("Example 1", 105, 120)
这个将创立 3 个范畴:0-80、81-100、101-150 和一个值为 105 和目标线为 120 的“示例”线
接下来,构建一个蓝色调色板:
palette = sns.color_palette("Blues_r", len(limits))
接下来是构建范畴的沉积条形图:
fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.set_yticks([1])
ax.set_yticklabels([data_to_plot[0]])
prev_limit = 0
for idx, lim in enumerate(limits):
ax.barh([1], lim-prev_limit, left=prev_limit, height=15, color=palette[idx])
prev_limit = lim
而后咱们能够增加一个较小的条形图来示意 105 的值:
ax.barh([1], data_to_plot[1], color='black', height=5)
曾经初见雏形了
最初一步是应用 axvline 增加指标标记:
ax.axvline(data_to_plot[2], color="gray", ymin=0.10, ymax=0.9)
下面我就实现了子弹图的简略制作,然而咱们所有的测试数值都是写死的,上面咱们编写一个能够填写任意数值的代码
最终代码
def bulletgraph(data=None, limits=None, labels=None, axis_label=None, title=None,
size=(5, 3), palette=None, formatter=None, target_color="gray",
bar_color="black", label_color="gray"):
""" Build out a bullet graph image
Args:
data = List of labels, measures and targets
limits = list of range valules
labels = list of descriptions of the limit ranges
axis_label = string describing x axis
title = string title of plot
size = tuple for plot size
palette = a seaborn palette
formatter = matplotlib formatter object for x axis
target_color = color string for the target line
bar_color = color string for the small bar
label_color = color string for the limit label text
Returns:
a matplotlib figure
"""
# Determine the max value for adjusting the bar height
# Dividing by 10 seems to work pretty well
h = limits[-1] / 10
# Use the green palette as a sensible default
if palette is None:
palette = sns.light_palette("green", len(limits), reverse=False)
# Must be able to handle one or many data sets via multiple subplots
if len(data) == 1:
fig, ax = plt.subplots(figsize=size, sharex=True)
else:
fig, axarr = plt.subplots(len(data), figsize=size, sharex=True)
# Add each bullet graph bar to a subplot
for idx, item in enumerate(data):
# Get the axis from the array of axes returned when the plot is created
if len(data) > 1:
ax = axarr[idx]
# Formatting to get rid of extra marking clutter
ax.set_aspect('equal')
ax.set_yticklabels([item[0]])
ax.set_yticks([1])
ax.spines['bottom'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
prev_limit = 0
for idx2, lim in enumerate(limits):
# Draw the bar
ax.barh([1], lim - prev_limit, left=prev_limit, height=h,
color=palette[idx2])
prev_limit = lim
rects = ax.patches
# The last item in the list is the value we're measuring
# Draw the value we're measuring
ax.barh([1], item[1], height=(h / 3), color=bar_color)
# Need the ymin and max in order to make sure the target marker
# fits
ymin, ymax = ax.get_ylim()
ax.vlines(item[2], ymin * .9, ymax * .9, linewidth=1.5, color=target_color)
# Now make some labels
if labels is not None:
for rect, label in zip(rects, labels):
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2,
-height * .4,
label,
ha='center',
va='bottom',
color=label_color)
if formatter:
ax.xaxis.set_major_formatter(formatter)
if axis_label:
ax.set_xlabel(axis_label)
if title:
fig.suptitle(title, fontsize=14)
fig.subplots_adjust(hspace=0)
代码尽管看起来有点长,然而其实都是下面步骤的叠加,都比较简单,就不再反复阐明了
咱们间接调用一下看看成果
data_to_plot2 = [("张三", 105, 120),
("李四", 99, 110),
("王五", 109, 125),
("赵六", 135, 123),
("钱七", 45, 105)]
bulletgraph(data_to_plot2, limits=[20, 60, 100, 160],
labels=["Poor", "OK", "Good", "Excellent"], size=(8,5),
axis_label="Performance Measure", label_color="black",
bar_color="#252525", target_color='#f7f7f7',
title="销售代表体现")
咱们还能够进行一些优化,格式化 x 轴以便更统一地显示信息
在上面这个例子中,咱们能够掂量一家假如公司的营销估算绩效
def money(x, pos):
'The two args are the value and tick position'
return "${:,.0f}".format(x)
money_fmt = FuncFormatter(money)
data_to_plot3 = [("HR", 50000, 60000),
("Marketing", 75000, 65000),
("Sales", 125000, 80000),
("R&D", 195000, 115000)]
palette = sns.light_palette("grey", 3, reverse=False)
bulletgraph(data_to_plot3, limits=[50000, 125000, 200000],
labels=["Below", "On Target", "Above"], size=(10,5),
axis_label="Annual Budget", label_color="black",
bar_color="#252525", target_color='#f7f7f7', palette=palette,
title="营销渠道估算绩效",
formatter=money_fmt)
看起来成果都不错哦,怎么样,一起跟着做起来吧!
本文由 mdnice 多平台公布