1. 简介
#include <unordered_map>
template <
class Key, // unordered_map::key_type
class T, // unordered_map::mapped_type
class Hash = std::hash<Key>, // unordered_map::hasher
class Pred = std::equal_to<Key>, // unordered_map::key_equal
class Alloc = std::allocator<std::pair<const Key, T>> // unordered_map::allocator_type
> class unordered_map;
unordered_map 具备如下性质:
- 唯一性:键是惟一的;
- 无序性:键值对是无序存储的,元素被存储在桶中,如果两个元素领有雷同哈希值的键,则它们会被存储于同一桶中;
- 具备常数工夫复杂度(均匀来说)的搜寻、插入、删除操作。
2. 自定义键类型
如果键是自定义类型,则须要提供相应的哈希函数,来计算键的哈希值。
办法 1:显式提供相应的模板参数
#include <iostream>
#include <unordered_map>
#include <string>
struct Key
{
std::string first;
std::string second;
};
struct KeyHash
{std::size_t operator()(const Key& k) const
{return std::hash<std::string>()(k.first) ^
(std::hash<std::string>()(k.second) << 1);
}
};
struct KeyEqual
{bool operator()(const Key& lhs, const Key& rhs) const
{return lhs.first == rhs.first && lhs.second == rhs.second;}
};
int main()
{Key k1{ "John", "Doe"}, k2{"Mary", "Sue"};
std::unordered_map<Key, std::string, KeyHash, KeyEqual> m =
{{ k1, "example"},
{k2, "another"}
};
std::cout << m[k1] << '\n'; // example
}
办法 2:显式特化 std::hash<> 模板
template<class Key>
struct hash;
#include <iostream>
#include <unordered_map>
#include <string>
struct Foo
{Foo(int val_) : val(val_) {}
int val;
// unordered_map::key_equal
bool operator==(const Foo& rhs) const
{return val == rhs.val;}
};
namespace std
{
template<>
struct hash<Foo>
{std::size_t operator()(const Foo& f) const
{return std::hash<int>{}(f.val);
}
};
}
int main()
{
std::unordered_map<Foo, std::string> m =
{{ Foo(1), "One"}, {2, "Two"}, {3, "Three"}
};
std::cout << m[Foo(1)] << '\n'; // One
}
3. 容器大小
std::unordered_map<int, char> m;
bool isEmpty = m.empty(); // Test whether container is empty
size_t n = m.size(); // Return container size
size_t limit = m.max_size(); // Return maximum size
/*
Sets the number of buckets in the container (bucket_count)
to the most appropriate to contain at least 30 elements.
*/
m.reserve(30);
4. 拜访元素
std::unordered_map<std::string, std::string> m;
m["Bakery"] = "Barbara"; // 存在时更新值;不存在时插入键值对
std::string v = m["Bakery"]; // 存在时返回对应的值;不存在时插入键值对(应用值类型的默认构造函数来创立值)m.at("Hello") = "World"; // 存在时更新值;不存在时抛出 out_of_range 异样
std::string v = m.at("Hello"); // 存在时返回对应的值;不存在时抛出 out_of_range 异样
5. 查找元素
std::unordered_map<std::string, double> m =
{{"mom", 5.4},
{"dad", 6.1},
{"bro", 5.9}
};
auto it = m.find("mom");
if (it == m.end())
{std::cout << "not found";}
else
{std::cout << "key=" << it->first << ", value=" << it->second;}
bool exists = m.contains("mom"); // 是否存在(C++20)
6. 插入元素
emplace:应用给定的实参原地结构元素,能够防止不必要的拷贝。只有不存在相应的键才会插入。
struct Person
{
std::string m_name;
double m_salary;
Person() = default;
Person(const std::string& name, double salary)
: m_name(name), m_salary(salary)
{}};
int main()
{
std::unordered_map<int, Person> m;
/*
返回值类型为 pair<iterator, bool>
其中,迭代器执行新插入的元素,或已存在的元素
bool 示意是否插入胜利
*/
auto p = m.emplace(1, Person(std::string("Mike"), 12345.6));
if (p.second)
{std::cout << "插入胜利 \n";}
else
{std::cout << "已存在,原值为:" << p.first->second.m_salary;}
}
insert:只有不存在相应的键才会插入。
std::unordered_map<std::string, double> m;
/*
返回值类型为 pair<iterator, bool>
其中,迭代器执行新插入的元素,或已存在的元素
bool 示意是否插入胜利
*/
auto p = m.insert({"sugar", 0.8});
if (p.second)
{std::cout << "插入胜利 \n";}
else
{std::cout << "已存在,原值为:" << p.first->second;}
7. 删除元素
std::unordered_map<std::string, std::string> m;
m.erase("France"); // 删除指定键的元素,不存在时也没事
auto it = m.find("France");
if (it != m.end())
{m.erase(it); // 删除指定地位的元素
}
m.clear(); // 清空容器
8. 遍历容器
遍历元素
std::unordered_map<std::string, std::string> m
{{ "Australia", "Canberra"},
{"U.S.", "Washington"},
{"France", "Paris"}
};
for (auto it = m.begin(); it != m.end(); it++)
{if (it->first[0] == 'U')
{std::cout << it->first << "->" << it->second << '\n';}
}
遍历桶
std::unordered_map<std::string, std::string> m
{{"house","maison"},
{"apple","pomme"},
{"tree","arbre"},
{"book","livre"},
{"door","porte"},
{"grapefruit","pamplemousse"}
};
size_t bucketCount = m.bucket_count();
std::cout << "bucket count:" << bucketCount << '\n';
for (size_t i = 0; i < bucketCount; i++)
{std::cout << "bucket #" << i << "has" << m.bucket_size(i) << "elements.\n";
}
std::cout << '\n';
for (size_t i = 0; i < bucketCount; i++)
{
std::cout << "bucket #" << i << "contains:";
for (auto it = m.begin(i); it != m.end(i); it++)
{std::cout << "[" << it->first << ":" << it->second << "]";
}
std::cout << '\n';
}
bucket count: 8
bucket #0 has 1 elements.
bucket #1 has 1 elements.
bucket #2 has 1 elements.
bucket #3 has 1 elements.
bucket #4 has 0 elements.
bucket #5 has 1 elements.
bucket #6 has 0 elements.
bucket #7 has 1 elements.
bucket #0 contains: [book:livre]
bucket #1 contains: [door:porte]
bucket #2 contains: [grapefruit:pamplemousse]
bucket #3 contains: [house:maison]
bucket #4 contains:
bucket #5 contains: [tree:arbre]
bucket #6 contains:
bucket #7 contains: [apple:pomme]