在浏览 linuxc 中看到一种快排的利用,求最小值,然而要求工夫复杂度放弃在 O(n).
实现如下,k 代表要找的第 k 小!
#include<iostream>
using namespace std;
#define LEN 8
int order_partition(int a[], int low, int high,int k){k = a[low];
while(low<high){while(low <high && a[high]>= k )
high--;
if(low<high)
a[low++] = a[high];
while(low<high && a[low]<= k )
low++;
if(low<high)
a[high--] = a[low];
}
a[low] = k;
return low;
}
int order_K_statistic(int a[],int start,int end, int k){
int i;
while(end>=start){i = order_partition(a,start,end,k);
if(k == i){return a[i];
}else if(k > i && k < LEN){return order_K_statistic(a,i+1,end,k);
}else if(k < i && k >= 0){return order_K_statistic(a,start,i-1,k);
}else{return -1;}
}
}
int main(){int a[LEN] = {5, 2, 4, 7, 1, 3, 2, 6};
int x = 0;
for(int i = 0; i < LEN; i++){x = order_K_statistic(a,0,LEN-1,i);
printf("%d\n",x);
}
return 0;
}
能够剖析一下为什么工夫复杂度是 Θ(n),在最好状况下每次丢掉一半的元素,n+n/2+n/4+n/8+…=2n,均匀状况下的剖析比较复杂,但疾速排序相似,工夫复杂度和最好状况下统一。(摘自《linuxc》)