共计 8304 个字符,预计需要花费 21 分钟才能阅读完成。
对于 Apache Pulsar
Apache Pulsar 是 Apache 软件基金会顶级我的项目,是下一代云原生分布式音讯流平台,集音讯、存储、轻量化函数式计算为一体,采纳计算与存储拆散架构设计,反对多租户、长久化存储、多机房跨区域数据复制,具备强一致性、高吞吐、低延时及高可扩展性等流数据存储个性。
GitHub 地址:http://github.com/apache/pulsar/
本文翻译自:《Using Apache Pulsar With Kotlin》,作者 Gilles Barbier。
原文链接:https://gillesbarbier.medium….
译者简介
宋博,就任于北京百观科技有限公司,高级开发工程师,专一于微服务,云计算,大数据畛域。
Apache Pulsar 通常被形容为下一代 Kafka,是开发人员工具集中一颗冉冉升起的新星。Pulsar 是用于 server-to-server 消息传递的多租户、高性能解决方案,通常用作可扩大应用程序的外围。
Pulsar 能够与 Kotlin 一起应用,因为它是用 Java 编写的。不过,它的 API 并没有思考 Kotlin 带来的弱小性能,例如数据类、协程或无反射序列化。
在这篇文章中,我将探讨如何通过 Kotlin 来应用 Pulsar。
为音讯体应用原生序列化
在 Kotlin 中定义音讯的一种默认形式是应用数据类,这些类的次要目标是保留数据。对于此类数据类,Kotlin 会主动提供 equals()、toString()、copy()等办法,从而缩短代码长度并升高呈现谬误的危险。
应用 Java 创立一个 Pulsar 生产者:
Producer<MyAvro> avroProducer = client
.newProducer(Schema.AVRO(MyAvro.class))
.topic(“some-avro-topic”)
.create();
该 Schema.AVRO(MyAvro.class) 指令将内省 MyAvro Java 类并从中推断出一个 Schema。这须要校验新的生产者是否会产生与现有消费者理论兼容的音讯。然而 Kotlin 数据类的 Java 实现不能很好地与 Pulsar 应用的默认序列化器配合应用。但侥幸的是,从 2.7.0 版本开始,Pulsar 容许您对生产者和消费者应用自定义序列化程序。
首先,您须要装置官网 Kotlin 序列化插件。应用它能够创立一个如下的音讯类:
@Serializable
data class RunTask(
val taskName: TaskName,
val taskId: TaskId,
val taskInput: TaskInput,
val taskOptions: TaskOptions,
val taskMeta: TaskMeta
)
留神 @Serializable 注解。有了它,你就能够应用 RunTask.serialiser() 让序列化器在不内省的状况下工作,这将使效率大大晋升!
目前,序列化插件仅反对 JSON(以及一些其余在 beta 内的格局 例如 protobuf)。所以咱们还须要 avro4k 库来扩大它并反对 Avro 格局。
应用这些工具,咱们能够创立一个像上面这样的 Producer 工作:
import com.github.avrokotlin.avro4k.Avro
import com.github.avrokotlin.avro4k.io.AvroEncodeFormat
import io.infinitic.common.tasks.executors.messages.RunTask
import kotlinx.serialization.KSerializer
import org.apache.avro.file.SeekableByteArrayInput
import org.apache.avro.generic.GenericDatumReader
import org.apache.avro.generic.GenericRecord
import org.apache.avro.io.DecoderFactory
import org.apache.pulsar.client.api.Consumer
import org.apache.pulsar.client.api.Producer
import org.apache.pulsar.client.api.PulsarClient
import org.apache.pulsar.client.api.Schema
import org.apache.pulsar.client.api.schema.SchemaDefinition
import org.apache.pulsar.client.api.schema.SchemaReader
import org.apache.pulsar.client.api.schema.SchemaWriter
import java.io.ByteArrayOutputStream
import java.io.InputStream
// Convert T instance to Avro schemaless binary format
fun <T : Any> writeBinary(t: T, serializer: KSerializer<T>): ByteArray {val out = ByteArrayOutputStream()
Avro.default.openOutputStream(serializer) {
encodeFormat = AvroEncodeFormat.Binary
schema = Avro.default.schema(serializer)
}.to(out).write(t).close()
return out.toByteArray()}
// Convert Avro schemaless byte array to T instance
fun <T> readBinary(bytes: ByteArray, serializer: KSerializer<T>): T {val datumReader = GenericDatumReader<GenericRecord>(Avro.default.schema(serializer))
val decoder = DecoderFactory.get().binaryDecoder(SeekableByteArrayInput(bytes), null)
return Avro.default.fromRecord(serializer, datumReader.read(null, decoder))
}
// custom Pulsar SchemaReader
class RunTaskSchemaReader: SchemaReader<RunTask> {override fun read(bytes: ByteArray, offset: Int, length: Int) =
read(bytes.inputStream(offset, length))
override fun read(inputStream: InputStream) =
readBinary(inputStream.readBytes(), RunTask.serializer())
}
// custom Pulsar SchemaWriter
class RunTaskSchemaWriter : SchemaWriter<RunTask> {override fun write(message: RunTask) = writeBinary(message, RunTask.serializer())
}
// custom Pulsar SchemaDefinition<RunTask>
fun runTaskSchemaDefinition(): SchemaDefinition<RunTask> =
SchemaDefinition.builder<RunTask>()
.withJsonDef(Avro.default.schema(RunTask.serializer()).toString())
.withSchemaReader(RunTaskSchemaReader())
.withSchemaWriter(RunTaskSchemaWriter())
.withSupportSchemaVersioning(true)
.build()
// Create an instance of Producer<RunTask>
fun runTaskProducer(client: PulsarClient): Producer<RunTask> = client
.newProducer(Schema.AVRO(runTaskSchemaDefinition()))
.topic("some-avro-topic")
.create();
// Create an instance of Consumer<RunTask>
fun runTaskConsumer(client: PulsarClient): Consumer<RunTask> = client
.newConsumer(Schema.AVRO(runTaskSchemaDefinition()))
.topic("some-avro-topic")
.subscribe();
密封类音讯和每个 Topic 一个封装
Pulsar 每个 Topic 只容许一种类型的音讯。在某些非凡状况下,这并不能满足全副需要。但这个问题能够通过应用封装模式来变通。首先,应用密封类从一个 Topic 创立所有类型音讯:@Serializable
sealed class TaskEngineMessage() {abstract val taskId: TaskId}
@Serializable
data class DispatchTask(
override val taskId: TaskId,
val taskName: TaskName,
val methodName: MethodName,
val methodParameterTypes: MethodParameterTypes?,
val methodInput: MethodInput,
val workflowId: WorkflowId?,
val methodRunId: MethodRunId?,
val taskMeta: TaskMeta,
val taskOptions: TaskOptions = TaskOptions()) : TaskEngineMessage()
@Serializable
data class CancelTask(
override val taskId: TaskId,
val taskOutput: MethodOutput
) : TaskEngineMessage()
@Serializable
data class TaskCanceled(
override val taskId: TaskId,
val taskOutput: MethodOutput,
val taskMeta: TaskMeta
) : TaskEngineMessage()
@Serializable
data class TaskCompleted(
override val taskId: TaskId,
val taskName: TaskName,
val taskOutput: MethodOutput,
val taskMeta: TaskMeta
) : TaskEngineMessage()
而后,再为这些音讯创立一个封装:
Note @Serializable
data class TaskEngineEnvelope(
val taskId: TaskId,
val type: TaskEngineMessageType,
val dispatchTask: DispatchTask? = null,
val cancelTask: CancelTask? = null,
val taskCanceled: TaskCanceled? = null,
val taskCompleted: TaskCompleted? = null,
) {
init {
val noNull = listOfNotNull(
dispatchTask,
cancelTask,
taskCanceled,
taskCompleted
)
require(noNull.size == 1)
require(noNull.first() == message())
require(noNull.first().taskId == taskId)
}
companion object {fun from(msg: TaskEngineMessage) = when (msg) {
is DispatchTask -> TaskEngineEnvelope(
msg.taskId,
TaskEngineMessageType.DISPATCH_TASK,
dispatchTask = msg
)
is CancelTask -> TaskEngineEnvelope(
msg.taskId,
TaskEngineMessageType.CANCEL_TASK,
cancelTask = msg
)
is TaskCanceled -> TaskEngineEnvelope(
msg.taskId,
TaskEngineMessageType.TASK_CANCELED,
taskCanceled = msg
)
is TaskCompleted -> TaskEngineEnvelope(
msg.taskId,
TaskEngineMessageType.TASK_COMPLETED,
taskCompleted = msg
)
}
}
fun message(): TaskEngineMessage = when (type) {
TaskEngineMessageType.DISPATCH_TASK -> dispatchTask!!
TaskEngineMessageType.CANCEL_TASK -> cancelTask!!
TaskEngineMessageType.TASK_CANCELED -> taskCanceled!!
TaskEngineMessageType.TASK_COMPLETED -> taskCompleted!!
}
}
enum class TaskEngineMessageType {
CANCEL_TASK,
DISPATCH_TASK,
TASK_CANCELED,
TASK_COMPLETED
}
请留神 Kotlin 如何优雅地查看 init! 能够借助 TaskEngineEnvelope.from(msg)
很容易创立一个封装,并通过 envelope.message()
返回原始音讯。
为什么这里增加了一个显式 taskId 值,而非应用一个全局字段 message:TaskEngineMessage
,并且针对每种音讯类型应用一个字段呢?是因为通过这种形式,我就能够借助 taskId 或 type,亦或者两者相结合的形式应用 PulsarSQL 来获取这个 Topic 的信息。
通过协程来构建 Worker
在一般 Java 中应用 Thread 很简单且容易出错。好在 Koltin 提供了 coroutines——一种更简略的异步解决形象——和 channels——一种在协程之间传输数据的便捷形式。
我能够通过以下形式创立一个 Worker:
- 单个 (“task-engine-message-puller”) 专用于从 Pulsar 拉取音讯的协程
- N 个协程 (“task-engine-$i”) 并行处理音讯
- 单个 (“task-engine-message-acknoldeger”) 解决后确认 Pulsar 音讯的协程
有很多个相似于这样的过程后我曾经增加了一个 logChannel 用来采集日志。请留神,为了可能在与接管它的协程不同的协程中确认 Pulsar 音讯,我须要将 TaskEngineMessage
封装到蕴含 Pulsar messageId
的MessageToProcess<TaskEngineMessage>
中:
typealias TaskEngineMessageToProcess = MessageToProcess<TaskEngineMessage>
fun CoroutineScope.startPulsarTaskEngineWorker(
taskEngineConsumer: Consumer<TaskEngineEnvelope>,
taskEngine: TaskEngine,
logChannel: SendChannel<TaskEngineMessageToProcess>?,
enginesNumber: Int
) = launch(Dispatchers.IO) {val taskInputChannel = Channel<TaskEngineMessageToProcess>()
val taskResultsChannel = Channel<TaskEngineMessageToProcess>()
// coroutine dedicated to pulsar message pulling
launch(CoroutineName("task-engine-message-puller")) {while (isActive) {val message: Message<TaskEngineEnvelope> = taskEngineConsumer.receiveAsync().await()
try {val envelope = readBinary(message.data, TaskEngineEnvelope.serializer())
taskInputChannel.send(MessageToProcess(envelope.message(), message.messageId))
} catch (e: Exception) {taskEngineConsumer.negativeAcknowledge(message.messageId)
throw e
}
}
}
// coroutines dedicated to Task Engine
repeat(enginesNumber) {launch(CoroutineName("task-engine-$it")) {for (messageToProcess in taskInputChannel) {
try {messageToProcess.output = taskEngine.handle(messageToProcess.message)
} catch (e: Exception) {messageToProcess.exception = e}
taskResultsChannel.send(messageToProcess)
}
}
}
// coroutine dedicated to pulsar message acknowledging
launch(CoroutineName("task-engine-message-acknowledger")) {for (messageToProcess in taskResultsChannel) {if (messageToProcess.exception == null) {taskEngineConsumer.acknowledgeAsync(messageToProcess.messageId).await()} else {taskEngineConsumer.negativeAcknowledge(messageToProcess.messageId)
}
logChannel?.send(messageToProcess)
}
}
}
data class MessageToProcess<T> (
val message: T,
val messageId: MessageId,
var exception: Exception? = null,
var output: Any? = null
)
总结
在本文中,咱们介绍了如何在 Kotlin 中实现的 Pulsar 应用办法:
- 代码音讯(包含接管多种类型音讯的 Pulsar Topic 的封装);
- 创立 Pulsar 的生产者 / 消费者;
- 构建一个可能并行处理许多音讯的简略 Worker。
关注公众号「Apache Pulsar」,获取更多技术干货
退出 Apache Pulsar 中文交换群 👇🏻