乐趣区

高吞吐量的分布式发布订阅消息系统Kafka之Producer源码分析

引言

Kafka 是一款很棒的消息系统,今天我们就来深入了解一下它的实现细节,首先关注 Producer 这一方。

要使用 kafka 首先要实例化一个 KafkaProducer,需要有 brokerIP、序列化器等必要 Properties 以及 acks(0、1、n)、compression、retries、batch.size 等非必要 Properties,通过这个简单的接口可以控制 Producer 大部分行为,实例化后就可以调用 send 方法发送消息了。

核心实现是这个方法:

public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
    // intercept the record, which can be potentially modified; this method does not throw exceptions
    ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record);//①
    return doSend(interceptedRecord, callback);//②
}

通过不同的模式可以实现发送即忘(忽略返回结果)、同步发送(获取返回的 future 对象,回调函数置为 null)、异步发送(设置回调函数)三种消息模式。

我们来看看消息类 ProducerRecord 有哪些属性:

private final String topic;// 主题
private final Integer partition;// 分区
private final Headers headers;// 头
private final K key;// 键
private final V value;// 值
private final Long timestamp;// 时间戳 

它有多个构造函数,可以适应不同的消息类型:比如有无分区、有无 key 等。

①中 ProducerInterceptors(有 0 ~ 无穷多个,形成一个拦截链)对 ProducerRecord 进行拦截处理(比如打上时间戳,进行审计与统计等操作)

public ProducerRecord<K, V> onSend(ProducerRecord<K, V> record) {
    ProducerRecord<K, V> interceptRecord = record;
    for (ProducerInterceptor<K, V> interceptor : this.interceptors) {
        try {interceptRecord = interceptor.onSend(interceptRecord);
        } catch (Exception e) {
            // 不抛出异常,继续执行下一个拦截器
            if (record != null)
                log.warn("Error executing interceptor onSend callback for topic: {}, partition: {}", record.topic(), record.partition(), e);
            else
                log.warn("Error executing interceptor onSend callback", e);
        }
    }
    return interceptRecord;
}

如果用户有定义就进行处理并返回处理后的 ProducerRecord,否则直接返回本身。
然后②中 doSend 真正发送消息,并且是异步的(源码太长只保留关键):

private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
    TopicPartition tp = null;
    try {
        // 序列化 key 和 value
        byte[] serializedKey;
        try {serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());
        } catch (ClassCastException cce) { }
        byte[] serializedValue;
        try {serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());
        } catch (ClassCastException cce) { }
        // 计算分区获得主题与分区
        int partition = partition(record, serializedKey, serializedValue, cluster);
        tp = new TopicPartition(record.topic(), partition);
        // 回调与事务处理省略。Header[] headers = record.headers().toArray();
        // 消息追加到 RecordAccumulator 中
        RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
                serializedValue, headers, interceptCallback, remainingWaitMs);
        // 该批次满了或者创建了新的批次就要唤醒 IO 线程发送该批次了,也就是 sender 的 wakeup 方法
        if (result.batchIsFull || result.newBatchCreated) {log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
            this.sender.wakeup();}
        return result.future;
    } catch (Exception e) {
        // 拦截异常并抛出
        this.interceptors.onSendError(record, tp, e);
        throw e;
    }
}

下面是计算分区的方法:

private int partition(ProducerRecord<K, V> record, 
byte[] serializedKey, byte[] serializedValue, Cluster cluster) {Integer partition = record.partition();
    // 消息有分区就直接使用,否则就使用分区器计算
    return partition != null ?
            partition :
            partitioner.partition(record.topic(), record.key(), serializedKey,
                     record.value(), serializedValue, cluster);
}

默认的分区器 DefaultPartitioner 实现方式是如果 partition 存在就直接使用,否则根据 key 计算 partition,如果 key 也不存在就使用 round robin 算法分配 partition。

/**
 * The default partitioning strategy:
 * <ul>
 * <li>If a partition is specified in the record, use it
 * <li>If no partition is specified but a key is present choose a partition based on a hash of the key
 * <li>If no partition or key is present choose a partition in a round-robin fashion
 */
public class DefaultPartitioner implements Partitioner {private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap<>();
    
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {//key 为空 
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);// 可用的分区
            if (availablePartitions.size() > 0) {// 有分区,取模就行
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return availablePartitions.get(part).partition();} else {// 无分区,return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {// key 不为空,计算 key 的 hash 并取模获得分区
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }

    private int nextValue(String topic) {AtomicInteger counter = topicCounterMap.get(topic);
        if (null == counter) {counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {counter = currentCounter;}
        }
        return counter.getAndIncrement();// 返回并加一,在取模的配合下就是 round robin}
}

以上就是发送消息的逻辑处理,接下来我们再看看消息发送的物理处理。

Sender(是一个 Runnable,被包含在一个 IO 线程 ioThread 中,该线程不断从 RecordAccumulator 队列中的读取消息并通过 Selector 将数据发送给 Broker)的 wakeup 方法,实际上是 KafkaClient 接口的 wakeup 方法,由 NetworkClient 类实现,采用了 NIO,也就是 java.nio.channels.Selector.wakeup() 方法实现。

Sender 的 run 中主要逻辑是不停执行准备消息和等待消息:

long pollTimeout = sendProducerData(now);//③
client.poll(pollTimeout, now);//④

③完成消息设置并保存到信道中,然后监听感兴趣的 key,由 KafkaChannel 实现。

public void setSend(Send send) {if (this.send != null)
        throw new IllegalStateException("Attempt to begin a send operation with prior send operation still in progress, connection id is" + id);
    this.send = send;
    this.transportLayer.addInterestOps(SelectionKey.OP_WRITE);
}

// transportLayer 的一种实现中的相关方法
public void addInterestOps(int ops) {key.interestOps(key.interestOps() | ops);
}

④主要是 Selector 的 poll,其 select 被 wakeup 唤醒:

public void poll(long timeout) throws IOException {
    /* check ready keys */
    long startSelect = time.nanoseconds();
    int numReadyKeys = select(timeout);//wakeup 使其停止阻塞
    long endSelect = time.nanoseconds();
    this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());

    if (numReadyKeys > 0 || !immediatelyConnectedKeys.isEmpty() || dataInBuffers) {Set<SelectionKey> readyKeys = this.nioSelector.selectedKeys();

        // Poll from channels that have buffered data (but nothing more from the underlying socket)
        if (dataInBuffers) {keysWithBufferedRead.removeAll(readyKeys); //so no channel gets polled twice
            Set<SelectionKey> toPoll = keysWithBufferedRead;
            keysWithBufferedRead = new HashSet<>(); //poll() calls will repopulate if needed
            pollSelectionKeys(toPoll, false, endSelect);
        }

        // Poll from channels where the underlying socket has more data
        pollSelectionKeys(readyKeys, false, endSelect);
        // Clear all selected keys so that they are included in the ready count for the next select
        readyKeys.clear();

        pollSelectionKeys(immediatelyConnectedKeys, true, endSelect);
        immediatelyConnectedKeys.clear();} else {madeReadProgressLastPoll = true; //no work is also "progress"}

    long endIo = time.nanoseconds();
    this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
}

其中 pollSelectionKeys 方法会调用如下方法完成消息发送:

public Send write() throws IOException {
    Send result = null;
    if (send != null && send(send)) {
        result = send;
        send = null;
    }
    return result;
}
private boolean send(Send send) throws IOException {send.writeTo(transportLayer);
    if (send.completed())
        transportLayer.removeInterestOps(SelectionKey.OP_WRITE);
    return send.completed();}

Send 是一次数据发包,一般由 ByteBufferSend 或者 MultiRecordsSend 实现,其 writeTo 调用 transportLayer 的 write 方法,一般由 PlaintextTransportLayer 或者 SslTransportLayer 实现,区分是否使用 ssl:

public long writeTo(GatheringByteChannel channel) throws IOException {long written = channel.write(buffers);
    if (written < 0)
        throw new EOFException("Wrote negative bytes to channel. This shouldn't happen.");
    remaining -= written;
    pending = TransportLayers.hasPendingWrites(channel);
    return written;
}

public int write(ByteBuffer src) throws IOException {return socketChannel.write(src);
}

到此就把 Producer 的业务相关逻辑处理和非业务相关的网络 2 方面的主要流程梳理清楚了。其他额外的功能是通过一些配置保证的。

比如顺序保证就是 max.in.flight.requests.per.connection,InFlightRequests 的 doSend 会进行判断(由 NetworkClient 的 canSendRequest 调用),只要该参数设为 1 即可保证当前包未确认就不能发送下一个包从而实现有序性

public boolean canSendMore(String node) {Deque<NetworkClient.InFlightRequest> queue = requests.get(node);
    return queue == null || queue.isEmpty() ||
           (queue.peekFirst().send.completed() && queue.size() < this.maxInFlightRequestsPerConnection);
}

再比如可靠性,通过设置 acks,Sender 中 sendProduceRequest 的 clientRequest 加入了回调函数:

  RequestCompletionHandler callback = new RequestCompletionHandler() {public void onComplete(ClientResponse response) {handleProduceResponse(response, recordsByPartition, time.milliseconds());// 调用 completeBatch
        }
    };
    
     /**
     * 完成或者重试投递,这里如果 acks 不对就会重试
     *
     * @param batch The record batch
     * @param response The produce response
     * @param correlationId The correlation id for the request
     * @param now The current POSIX timestamp in milliseconds
     */
    private void completeBatch(ProducerBatch batch, ProduceResponse.PartitionResponse response, long correlationId,
                               long now, long throttleUntilTimeMs) { }
    
    public class ProduceResponse extends AbstractResponse {
      /**
         * Possible error code:
         * INVALID_REQUIRED_ACKS (21)
         */
    }

kafka 源码一层一层包装很多,错综复杂,如有错误请大家不吝赐教。

退出移动版