分布式限流之常用算法

45次阅读

共计 1811 个字符,预计需要花费 5 分钟才能阅读完成。

令牌桶算法

Token Bucket 令牌桶算法是目前应用最为广泛的限流算法,顾名思义,它有以下两个关键角色:

  1. 令牌 获取到令牌的 Request 才会被处理,其他 Requests 要么排队要么被直接丢弃
  2. 用来装令牌的地方,所有 Request 都从这个桶里面获取令牌

了解了这两个角色之后,让我们来看一下令牌桶算法的图示:

下面我们分别从令牌生成和令牌获取两个流程来解读令牌桶算法:

令牌生成

这个流程涉及到令牌生成器和令牌桶,前面我们提到过令牌桶是一个装令牌的地方,既然是个桶那么必然有一个容量,也就是说令牌桶所能容纳的令牌数量是一个固定的数值。

对于令牌生成器来说,它会根据一个预定的速率向桶中添加令牌,比如我们可以配置让它以每秒 100 个请求的速率发放令牌,或者每分钟 50 个。注意这里的发放速度是匀速,也就是说这 50 个令牌并非是在每个时间窗口刚开始的时候一次性发放,而是会在这个时间窗口内匀速发放。

在令牌发放器就是一个水龙头,假如在下面接水的桶子满了,那么自然这个水(令牌)就流到了外面。在令牌发放过程中也一样,令牌桶的容量是有限的,如果当前已经放满了额定容量的令牌,那么新来的令牌就会被丢弃掉。

令牌获取

每个访问请求到来后,必须获取到一个令牌才能执行后面的逻辑。假如令牌的数量少,而访问请求较多的情况下,一部分请求自然无法获取到令牌,那么这个时候我们可以设置一个“缓冲队列”来暂存这些多余的请求。

缓冲队列其实是一个可选的选项,并不是所有应用了令牌桶算法的程序都会实现队列。当有缓存队列存在的情况下,那些暂时没有获取到令牌的请求将被放到这个队列中排队,直到新的令牌产生后,再从队列头部拿出一个请求来匹配令牌。

当队列已满的情况下,这部分访问请求将被丢弃。在实际应用中我们还可以给这个队列加一系列的特效,比如设置队列中请求的存活时间,或者将队列改造为 PriorityQueue,根据某种优先级排序,而不是先进先出。算法是死的,人是活的,先进的生产力来自于不断的创造,在技术领域尤其如此。

漏桶算法

Leaky Bucket。瞧见没,又是个桶,限流算法是跟桶杠上了,那么漏桶和令牌桶有什么不同呢?我们来看图说话:

漏桶算法的前半段和令牌桶类似,但是操作的对象不同,令牌桶是将令牌放入桶里,而漏桶是将访问请求的数据包放到桶里。同样的是,如果桶满了,那么后面新来的数据包将被丢弃。

漏桶算法的后半程是有鲜明特色的,它永远只会以一个恒定的速率将数据包从桶内流出。打个比方,如果我设置了漏桶可以存放 100 个数据包,然后流出速度是 1s 一个,那么不管数据包以什么速率流入桶里,也不管桶里有多少数据包,漏桶能保证这些数据包永远以 1s 一个的恒定速度被处理。

漏桶 vs 令牌桶的区别

根据它们各自的特点不难看出来,这两种算法都有一个“恒定”的速率和“不定”的速率。令牌桶是以恒定速率创建令牌,但是访问请求获取令牌的速率“不定”,反正有多少令牌发多少,令牌没了就干等。而漏桶是以“恒定”的速率处理请求,但是这些请求流入桶的速率是“不定”的。

从这两个特点来说,漏桶的天然特性决定了它不会发生突发流量,就算每秒 1000 个请求到来,那么它对后台服务输出的访问速率永远恒定。而令牌桶则不同,其特性可以“预存”一定量的令牌,因此在应对突发流量的时候可以在短时间消耗所有令牌,其突发流量处理效率会比漏桶高,但是导向后台系统的压力也会相应增多。

滑动窗口

Rolling Window

上图中黑色的大框就是时间窗口,我们设定窗口时间为 5 秒,它会随着时间推移向后滑动。我们将窗口内的时间划分为五个小格子,每个格子代表 1 秒钟,同时这个格子还包含一个计数器,用来计算在当前时间内访问的请求数量。那么这个时间窗口内的总访问量就是所有格子计数器累加后的数值。

比如说,我们在第一秒内有 5 个用户访问,第 5 秒内有 10 个用户访问,那么在 0 到 5 秒这个时间窗口内访问量就是 15。如果我们的接口设置了时间窗口内访问上限是 20,那么当时间到第六秒的时候,这个时间窗口内的计数总和就变成了 10,因为 1 秒的格子已经退出了时间窗口,因此在第六秒内可以接收的访问量就是 20-10=10 个。

滑动窗口其实也是一种计算器算法,它有一个显著特点,当时间窗口的跨度越长时,限流效果就越平滑。打个比方,如果当前时间窗口只有两秒,而访问请求全部集中在第一秒的时候,当时间向后滑动一秒后,当前窗口的计数量将发生较大的变化,拉长时间窗口可以降低这种情况的发生概率。

正文完
 0