共计 9149 个字符,预计需要花费 23 分钟才能阅读完成。
SpringBoot 实战电商项目 mall(30k+star)地址:https://github.com/macrozheng/mall
摘要
记得刚接触 Elasticsearch 的时候,没找啥资料,直接看了遍 Elasticsearch 的中文官方文档,中文文档很久没更新了,一直都是 2.3 的版本。最近又重新看了遍 6.0 的官方文档,由于官方文档介绍的内容比较多,每次看都很费力,所以这次整理了其中最常用部分,写下了这篇入门教程,希望对大家有所帮助。
简介
Elasticsearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式的全文搜索引擎,基于 restful web 接口。Elasticsearch 是用 Java 语言开发的,基于 Apache 协议的开源项目,是目前最受欢迎的企业搜索引擎。Elasticsearch 广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。
安装
Windows 下的安装
Elasticsearch
- 下载 Elasticsearch 6.2.2 的 zip 包,并解压到指定目录,下载地址:https://www.elastic.co/cn/dow…
- 安装中文分词插件,在 elasticsearch-6.2.2bin 目录下执行以下命令;
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip
- 运行 bin 目录下的 elasticsearch.bat 启动 Elasticsearch;
Kibana
- 下载 Kibana, 作为访问 Elasticsearch 的客户端,请下载 6.2.2 版本的 zip 包,并解压到指定目录,下载地址:https://artifacts.elastic.co/…
- 运行 bin 目录下的 kibana.bat,启动 Kibana 的用户界面
- 访问 http://localhost:5601 即可打开 Kibana 的用户界面:
Linux 下的安装
Elasticsearch
- 下载 elasticsearch 6.4.0 的 docker 镜像;
docker pull elasticsearch:6.4.0
- 修改虚拟内存区域大小,否则会因为过小而无法启动;
sysctl -w vm.max_map_count=262144
- 使用 docker 命令启动;
docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \ | |
-e "discovery.type=single-node" \ | |
-e "cluster.name=elasticsearch" \ | |
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \ | |
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \ | |
-d elasticsearch:6.4.0 |
- 启动时会发现
/usr/share/elasticsearch/data
目录没有访问权限,只需要修改该目录的权限,再重新启动即可;
chmod 777 /mydata/elasticsearch/data/
- 安装中文分词器 IKAnalyzer,并重新启动;
docker exec -it elasticsearch /bin/bash | |
#此命令需要在容器中运行 | |
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip | |
docker restart elasticsearch |
- 访问会返回版本信息:http://192.168.3.101:9200/
Kibina
- 下载 kibana 6.4.0 的 docker 镜像;
docker pull kibana:6.4.0
- 使用 docker 命令启动;
docker run --name kibana -p 5601:5601 \ | |
--link elasticsearch:es \ | |
-e "elasticsearch.hosts=http://es:9200" \ | |
-d kibana:6.4.0 |
- 访问地址进行测试:http://192.168.3.101:5601
相关概念
- Near Realtime(近实时):Elasticsearch 是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。
- Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
- Node(节点):节点是指属于集群的单个 Elasticsearch 实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为
elasticsearch
的群集。 - Index(索引):索引是一些具有相似特征的文档集合,类似于 MySql 中数据库的概念。
- Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似 MySql 中表的概念。
注意
:在 Elasticsearch 6.0.0 及更高的版本中,一个索引只能包含一个类型。 - Document(文档):文档是可被索引的基本信息单位,以 JSON 形式表示,类似于 MySql 中行记录的概念。
- Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch 提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
- Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch 提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。
集群状态查看
- 查看集群健康状态;
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent | |
1585552862 15:21:02 elasticsearch yellow 1 1 27 27 0 0 25 0 - 51.9% |
- 查看节点状态;
GET /_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name | |
127.0.0.1 23 94 28 mdi * KFFjkpV |
- 查看所有索引信息;
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size | |
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb | |
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb |
索引操作
- 创建索引并查看;
PUT /customer | |
GET /_cat/indices?v |
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size | |
yellow open customer 9uPjf94gSq-SJS6eOuJrHQ 5 1 0 0 460b 460b | |
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb | |
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb |
- 删除索引并查看;
DELETE /customer | |
GET /_cat/indices?v |
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size | |
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb | |
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb |
类型操作
- 查看文档的类型;
GET /bank/account/_mapping
{ | |
"bank": { | |
"mappings": { | |
"account": { | |
"properties": { | |
"account_number": {"type": "long"}, | |
"address": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"age": {"type": "long"}, | |
"balance": {"type": "long"}, | |
"city": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"email": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"employer": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"firstname": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"gender": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"lastname": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
}, | |
"state": { | |
"type": "text", | |
"fields": { | |
"keyword": { | |
"type": "keyword", | |
"ignore_above": 256 | |
} | |
} | |
} | |
} | |
} | |
} | |
} | |
} |
文档操作
- 在索引中添加文档;
PUT /customer/doc/1 | |
{"name": "John Doe"} |
{ | |
"_index": "customer", | |
"_type": "doc", | |
"_id": "1", | |
"_version": 1, | |
"result": "created", | |
"_shards": { | |
"total": 2, | |
"successful": 1, | |
"failed": 0 | |
}, | |
"_seq_no": 3, | |
"_primary_term": 1 | |
} |
- 查看索引中的文档;
GET /customer/doc/1
{ | |
"_index": "customer", | |
"_type": "doc", | |
"_id": "1", | |
"_version": 2, | |
"found": true, | |
"_source": {"name": "John Doe"} | |
} |
- 修改索引中的文档:
POST /customer/doc/1/_update | |
{"doc": { "name": "Jane Doe"} | |
} |
{ | |
"_index": "customer", | |
"_type": "doc", | |
"_id": "1", | |
"_version": 2, | |
"result": "updated", | |
"_shards": { | |
"total": 2, | |
"successful": 1, | |
"failed": 0 | |
}, | |
"_seq_no": 4, | |
"_primary_term": 1 | |
} |
- 删除索引中的文档;
DELETE /customer/doc/1
{ | |
"_index": "customer", | |
"_type": "doc", | |
"_id": "1", | |
"_version": 3, | |
"result": "deleted", | |
"_shards": { | |
"total": 2, | |
"successful": 1, | |
"failed": 0 | |
}, | |
"_seq_no": 2, | |
"_primary_term": 1 | |
} |
- 对索引中的文档执行批量操作;
POST /customer/doc/_bulk | |
{"index":{"_id":"1"}} | |
{"name": "John Doe"} | |
{"index":{"_id":"2"}} | |
{"name": "Jane Doe"} |
{ | |
"took": 45, | |
"errors": false, | |
"items": [ | |
{ | |
"index": { | |
"_index": "customer", | |
"_type": "doc", | |
"_id": "1", | |
"_version": 3, | |
"result": "updated", | |
"_shards": { | |
"total": 2, | |
"successful": 1, | |
"failed": 0 | |
}, | |
"_seq_no": 5, | |
"_primary_term": 1, | |
"status": 200 | |
} | |
}, | |
{ | |
"index": { | |
"_index": "customer", | |
"_type": "doc", | |
"_id": "2", | |
"_version": 1, | |
"result": "created", | |
"_shards": { | |
"total": 2, | |
"successful": 1, | |
"failed": 0 | |
}, | |
"_seq_no": 0, | |
"_primary_term": 1, | |
"status": 201 | |
} | |
} | |
] | |
} |
数据搜索
查询表达式 (Query DSL) 是一种非常灵活又富有表现力的查询语言,Elasticsearch 使用它可以以简单的 JSON 接口来实现丰富的搜索功能,下面的搜索操作都将使用它。
数据准备
- 首先我们需要导入一定量的数据用于搜索,使用的是银行账户表的例子,数据结构如下:
{ | |
"account_number": 0, | |
"balance": 16623, | |
"firstname": "Bradshaw", | |
"lastname": "Mckenzie", | |
"age": 29, | |
"gender": "F", | |
"address": "244 Columbus Place", | |
"employer": "Euron", | |
"email": "bradshawmckenzie@euron.com", | |
"city": "Hobucken", | |
"state": "CO" | |
} |
- 我们先复制下需要导入的数据,数据地址:https://github.com/macrozheng…
- 然后直接使用批量操作来导入数据,注意本文所有操作都在 Kibana 的 Dev Tools 中进行;
POST /bank/account/_bulk | |
{ | |
"index": {"_id": "1"} | |
} | |
{ | |
"account_number": 1, | |
"balance": 39225, | |
"firstname": "Amber", | |
"lastname": "Duke", | |
"age": 32, | |
"gender": "M", | |
"address": "880 Holmes Lane", | |
"employer": "Pyrami", | |
"email": "amberduke@pyrami.com", | |
"city": "Brogan", | |
"state": "IL" | |
} | |
...... 省略若干条数据 |
- 导入完成后查看索引信息,可以发现
bank
索引中已经创建了 1000 条文档。
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size | |
yellow open bank HFjxDLNLRA-NATPKUQgjBw 5 1 1000 0 474.6kb 474.6kb |
搜索入门
- 最简单的搜索,使用
match_all
来表示,例如搜索全部;
GET /bank/_search | |
{"query": { "match_all": {} } | |
} |
- 分页搜索,
from
表示偏移量,从 0 开始,size
表示每页显示的数量;
GET /bank/_search | |
{"query": { "match_all": {} }, | |
"from": 0, | |
"size": 10 | |
} |
- 搜索排序,使用
sort
表示,例如按balance
字段降序排列;
GET /bank/_search | |
{"query": { "match_all": {} }, | |
"sort": {"balance": { "order": "desc"} } | |
} |
- 搜索并返回指定字段内容,使用
_source
表示,例如只返回account_number
和balance
两个字段内容:
GET /bank/_search | |
{"query": { "match_all": {} }, | |
"_source": ["account_number", "balance"] | |
} |
条件搜索
- 条件搜索,使用
match
表示匹配条件,例如搜索出account_number
为20
的文档:
GET /bank/_search | |
{ | |
"query": { | |
"match": {"account_number": 20} | |
} | |
} |
- 文本类型字段的条件搜索,例如搜索
address
字段中包含mill
的文档,对比上一条搜索可以发现,对于数值类型match
操作使用的是精确匹配,对于文本类型使用的是模糊匹配;
GET /bank/_search | |
{ | |
"query": { | |
"match": {"address": "mill"} | |
}, | |
"_source": [ | |
"address", | |
"account_number" | |
] | |
} |
- 短语匹配搜索,使用
match_phrase
表示,例如搜索address
字段中同时包含mill
和lane
的文档:
GET /bank/_search | |
{ | |
"query": { | |
"match_phrase": {"address": "mill lane"} | |
} | |
} |
组合搜索
- 组合搜索,使用
bool
来进行组合,must
表示同时满足,例如搜索address
字段中同时包含mill
和lane
的文档;
GET /bank/_search | |
{ | |
"query": { | |
"bool": { | |
"must": [{ "match": { "address": "mill"} }, | |
{"match": { "address": "lane"} } | |
] | |
} | |
} | |
} |
- 组合搜索,
should
表示满足其中任意一个,搜索address
字段中包含mill
或者lane
的文档;
GET /bank/_search | |
{ | |
"query": { | |
"bool": { | |
"should": [{ "match": { "address": "mill"} }, | |
{"match": { "address": "lane"} } | |
] | |
} | |
} | |
} |
- 组合搜索,
must_not
表示同时不满足,例如搜索address
字段中不包含mill
且不包含lane
的文档;
GET /bank/_search | |
{ | |
"query": { | |
"bool": { | |
"must_not": [{ "match": { "address": "mill"} }, | |
{"match": { "address": "lane"} } | |
] | |
} | |
} | |
} |
- 组合搜索,组合
must
和must_not
,例如搜索age
字段等于40
且state
字段不包含ID
的文档;
GET /bank/_search | |
{ | |
"query": { | |
"bool": { | |
"must": [{ "match": { "age": "40"} } | |
], | |
"must_not": [{ "match": { "state": "ID"} } | |
] | |
} | |
} | |
} |
过滤搜索
- 搜索过滤,使用
filter
来表示,例如过滤出balance
字段在20000~30000
的文档;
GET /bank/_search | |
{ | |
"query": { | |
"bool": {"must": { "match_all": {} }, | |
"filter": { | |
"range": { | |
"balance": { | |
"gte": 20000, | |
"lte": 30000 | |
} | |
} | |
} | |
} | |
} | |
} |
搜索聚合
- 对搜索结果进行聚合,使用
aggs
来表示,类似于 MySql 中的group by
,例如对state
字段进行聚合,统计出相同state
的文档数量;
GET /bank/_search | |
{ | |
"size": 0, | |
"aggs": { | |
"group_by_state": { | |
"terms": {"field": "state.keyword"} | |
} | |
} | |
} |
- 嵌套聚合,例如对
state
字段进行聚合,统计出相同state
的文档数量,再统计出balance
的平均值;
GET /bank/_search | |
{ | |
"size": 0, | |
"aggs": { | |
"group_by_state": { | |
"terms": {"field": "state.keyword"}, | |
"aggs": { | |
"average_balance": { | |
"avg": {"field": "balance"} | |
} | |
} | |
} | |
} | |
} |
- 对聚合搜索的结果进行排序,例如按
balance
的平均值降序排列;
GET /bank/_search | |
{ | |
"size": 0, | |
"aggs": { | |
"group_by_state": { | |
"terms": { | |
"field": "state.keyword", | |
"order": {"average_balance": "desc"} | |
}, | |
"aggs": { | |
"average_balance": { | |
"avg": {"field": "balance"} | |
} | |
} | |
} | |
} | |
} |
- 按字段值的范围进行分段聚合,例如分段范围为
age
字段的[20,30]
[30,40]
[40,50]
,之后按gender
统计文档个数和balance
的平均值;
GET /bank/_search | |
{ | |
"size": 0, | |
"aggs": { | |
"group_by_age": { | |
"range": { | |
"field": "age", | |
"ranges": [ | |
{ | |
"from": 20, | |
"to": 30 | |
}, | |
{ | |
"from": 30, | |
"to": 40 | |
}, | |
{ | |
"from": 40, | |
"to": 50 | |
} | |
] | |
}, | |
"aggs": { | |
"group_by_gender": { | |
"terms": {"field": "gender.keyword"}, | |
"aggs": { | |
"average_balance": { | |
"avg": {"field": "balance"} | |
} | |
} | |
} | |
} | |
} | |
} | |
} |
参考资料
https://www.elastic.co/guide/…
公众号
mall 项目全套学习教程连载中,关注公众号 第一时间获取。
正文完