arrange(.data, ..., .by_group = FALSE)msleep%>%group_by(vore)%>%arrange(sleep_total)%>%write_csv("C:/Users/panda/Desktop/R-result/arrange0.csv")msleep%>%group_by(vore)%>%arrange(sleep_total,.by_group=TRUE)%>%write_csv("C:/Users/panda/Desktop/R-result/arrange1.csv")第一次执行组存在但表中看不出
count(x, ..., wt = NULL, sort = FALSE, name = NULL)tally(x, wt = NULL, sort = FALSE, name = NULL)add_count(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated())add_tally(x, wt = NULL, sort = FALSE, name = NULL)msleep%>%count(vore,sort=TRUE,name='n')%>%write_csv("C:/Users/panda/Desktop/R-result/count0.csv")msleep%>%count(vore,wt=sleep_total,sort=TRUE,name='n')%>%write_csv("C:/Users/panda/Desktop/R-result/count1.csv")msleep%>%group_by(vore)%>%tally(sort=TRUE,name='n')%>%write_csv("C:/Users/panda/Desktop/R-result/tally.csv")msleep%>%add_count(vore,sort=TRUE,name='n')%>%write_csv("C:/Users/panda/Desktop/R-result/add_count.csv")msleep%>%add_tally(wt=sleep_total,sort=TRUE,name='n')%>%write_csv("C:/Users/panda/Desktop/R-result/add_tally.csv")<font color=red> .drop = deprecated()</font>
count(列名)==group_by(列名)%>%tally()
add_保留原数据并增加新列(新列反复项必定多)
wt如果是数值型数据新列是sum的后果
distinct(.data, ..., .keep_all = FALSE)msleep%>%distinct(vore,.keep_all=TRUE)%>%write_csv("C:/Users/panda/Desktop/R-result/distinct0.csv")msleep%>%distinct(vore)%>%write_csv("C:/Users/panda/Desktop/R-result/distinct1.csv").keep_all = TRUE保留所有列并反复时抉择第一行
filter(.data, ..., .preserve = FALSE)msleep%>%group_by(vore)%>%filter(sleep_total>10)%>%write_csv("C:/Users/panda/Desktop/R-result/filter0.csv").preserve = FALSE组的数量可能会缩小,当在某组没有满足条件的行
mutate( .data, ..., .keep = c("all", "used", "unused", "none"), .before = NULL, .after = NULL)transmute(.data, ...)msleep%>%mutate(test=sleep_total*2,.keep='none')%>%write_csv("C:/Users/panda/Desktop/R-result/mutate.csv")msleep%>%transmute(test=sleep_total*2)%>%write_csv("C:/Users/panda/Desktop/R-result/transmute.csv")mutate(.data,.keep = "none")==transmute(.data)
...