共计 3945 个字符,预计需要花费 10 分钟才能阅读完成。
不用 lambda 的基础版
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Iterator;
public class WordCount implements Serializable {public static void main(String[] args) {
// 输入文件
String wordFile = "/user/walker/input/wordcount/idea.txt";
SparkSession spark = SparkSession.builder()
.appName("wordcount")
.config("spark.executor.instances", 10)
.config("spark.executor.memory", "4g")
.config("spark.executor.cores", 1)
.config("spark.hadoop.mapreduce.output.fileoutputformat.compress", false)
.getOrCreate();
JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
JavaRDD<String> hdfstext = jsc.textFile(wordFile);
// 切分
JavaRDD<String> words = hdfstext.flatMap(new FlatMapFunction<String, String>() {public Iterator<String> call(String x) {return Arrays.asList(x.split(" ")).iterator();}
});
// 单次计 1
JavaPairRDD<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {public Tuple2<String, Integer> call(String word) {return new Tuple2<>(word, 1);
}
});
// 累加 1
JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) {return v1 + v2;}
}).repartition(1);
// 输出目录
String outDir = "/user/walker/output/wordcount";
wordCounts.saveAsTextFile(outDir);
jsc.close();}
}
用 lambda 的基础版
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;
import java.io.Serializable;
import java.util.Arrays;
public class WordCount2 implements Serializable {public static void main(String[] args) {
// 输入文件
String wordFile = "/user/walker/input/wordcount/idea.txt";
SparkSession spark = SparkSession.builder()
.appName("wordcount")
.config("spark.executor.instances", 10)
.config("spark.executor.memory", "4g")
.config("spark.executor.cores", 1)
.config("spark.hadoop.mapreduce.output.fileoutputformat.compress", false)
.getOrCreate();
JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
JavaRDD<String> hdfstext = jsc.textFile(wordFile);
// 切分
JavaRDD<String> words = hdfstext.flatMap(line -> Arrays.asList(line.split(" ")).iterator());
// 单次计 1
JavaPairRDD<String, Integer> pairs = words.mapToPair(word -> new Tuple2<>(word, 1));
// 累加 1
JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey((v1, v2) -> v1 + v2).repartition(1);
// 输出目录
String outDir = "/user/walker/output/wordcount";
wordCounts.saveAsTextFile(outDir);
jsc.close();}
}
用 lambda 的变形版
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;
import java.io.Serializable;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
public class WordCount3 implements Serializable {public static void main(String[] args) {
// 输入文件
String wordFile = "/user/walker/input/wordcount/idea.txt";
SparkSession spark = SparkSession.builder()
.appName("wordcount")
.config("spark.executor.instances", 10)
.config("spark.executor.memory", "4g")
.config("spark.executor.cores", 1)
.config("spark.hadoop.mapreduce.output.fileoutputformat.compress", false)
.getOrCreate();
JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
JavaRDD<String> hdfstext = jsc.textFile(wordFile);
// 切分
JavaRDD<String> words = hdfstext.flatMap(line -> Arrays.asList(line.split(" ")).iterator());
// 计数
Map<String, Long> wordCounts = words.countByValue();
// 将 Map 转位 RDD
List<Tuple2<String, Long>> lst = new LinkedList<>();
wordCounts.forEach((k, v) -> lst.add(new Tuple2<>(k, v)));
JavaPairRDD<String, Long> result = jsc.parallelizePairs(lst).repartition(1);;
// 保存结果到 HDFS
String outDir = "/user/walker/output/wordcount"; // 输出目录
result.saveAsTextFile(outDir);
jsc.close();}
}
本文出自 walker snapshot
正文完