PyTorch-10-中文文档正式接受校对-ApacheCN

24次阅读

共计 3348 个字符,预计需要花费 9 分钟才能阅读完成。

参与方式:https://github.com/apachecn/p…

整体进度:https://github.com/apachecn/p…

项目仓库:https://github.com/apachecn/p…

整体进度

章节 贡献者 进度 校验者 进度
教程部分
Deep Learning with PyTorch: A 60 Minute Blitz@bat67100%@AllenZYJ
What is PyTorch?@bat67100%@AllenZYJ
Autograd: Automatic Differentiation@bat67100%@AllenZYJ
Neural Networks@bat67100%@AllenZYJ
Training a Classifier@bat67100%@AllenZYJ
Optional: Data Parallelism@bat67100%
Data Loading and Processing Tutorial@yportne13100%
Learning PyTorch with Examples@bat67100%@Smilexuhc
Transfer Learning Tutorial@jiangzhonglian100%@infdahai
Deploying a Seq2Seq Model with the Hybrid Frontend@cangyunye100%
Saving and Loading Models@bruce1408100%
What is torch.nn really?@lhc741100%
Finetuning Torchvision Models@ZHHAYO100%
Spatial Transformer Networks Tutorial@PEGASUS1993100%@Smilexuhc
Neural Transfer Using PyTorch@bdqfork100%
Adversarial Example Generation@cangyunye100%@infdahai
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX@PEGASUS1993100%
Chatbot Tutorial@a625687551100%
Generating Names with a Character-Level RNN@hhxx2015100%
Classifying Names with a Character-Level RNN@hhxx2015100%
Deep Learning for NLP with Pytorch@bruce1408100%
Introduction to PyTorch@guobaoyo100%
Deep Learning with PyTorch@bdqfork100%
Word Embeddings: Encoding Lexical Semantics@sight007100%@Smilexuhc
Sequence Models and Long-Short Term Memory Networks@ETCartman100%
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF@JohnJiangLA
Translation with a Sequence to Sequence Network and Attention@mengfu188100%
DCGAN Tutorial@wangshuai9517100%
Reinforcement Learning (DQN) Tutorial@friedhelm739100%
Creating Extensions Using numpy and scipy@cangyunye100%
Custom C++ and CUDA Extensions@P3n9W31
Extending TorchScript with Custom C++ Operators@sunxia233
Writing Distributed Applications with PyTorch@firdameng100%
PyTorch 1.0 Distributed Trainer with Amazon AWS@yportne13100%
ONNX Live Tutorial@PEGASUS1993100%
Loading a PyTorch Model in C++@talengu100%
Using the PyTorch C++ Frontend@solerji100%
文档部分
Autograd mechanics@PEGASUS1993100%
Broadcasting semantics@PEGASUS1993100%
CUDA semantics@jiangzhonglian100%
Extending PyTorch@PEGASUS1993100%
Frequently Asked Questions@PEGASUS1993100%
Multiprocessing best practices@cvley100%
Reproducibility@WyattHuang1
Serialization semantics@yuange250100%
Windows FAQ@PEGASUS1993100%
torch@yiran7324
torch.Tensor@hijkzzz100%
Tensor Attributes@yuange250100%
Type Info@PEGASUS1993100%
torch.sparse@hijkzzz100%
torch.cuda@bdqfork100%
torch.Storage@yuange250100%
torch.nn@yuange250100%
torch.nn.functional@hijkzzz100%
torch.nn.init@GeneZC100%
torch.optim@qiaokuoyuan
Automatic differentiation package – torch.autograd@gfjiangly100%
Distributed communication package – torch.distributed@univeryinli100%
Probability distributions – torch.distributions@hijkzzz100%
Torch Script@keyianpai100%
Multiprocessing package – torch.multiprocessing@hijkzzz100%
torch.utils.bottleneck@belonHan100%
torch.utils.checkpoint@belonHan100%
torch.utils.cpp_extension@belonHan100%
torch.utils.data@BXuan694100%
torch.utils.dlpack@kunwuz100%
torch.hub@kunwuz100%
torch.utils.model_zoo@BXuan694100%
torch.onnx@guobaoyo100%
Distributed communication package (deprecated) – torch.distributed.deprecated@luxinfeng
torchvision Reference@BXuan694100%
torchvision.datasets@BXuan694100%
torchvision.models@BXuan694100%
torchvision.transforms@BXuan694100%
torchvision.utils@BXuan694100%

奖励

贡献者可以领取官方的纪念礼物。邮件部分内容如下:

As a start, let us know where we can ship you some PyTorch swag!
We have stickers, t-shirts, hoodies, and backpacks – let us know what sizes you need.

请贡献者在 #353 留下联系方式,有任何问题请私聊片刻(QQ 529815144)。

正文完
 0