前言
前面我们讲了
Okhttp 的基本用法
Okhttp3 源码解析(1)-OkHttpClient 分析
Okhttp3 源码解析(2)-Request 分析
newCall 分析
Call 初始化
我们首先看一下在哪用到了 Call:
final Call call = okHttpClient.newCall(request);
想起来了吧?无论是 get 还是 post 请求 都要生成 call 对象,在上面我们发现 call 实例需要一个 okHttpClient
与request
实例,我们先点进 Call 类去看看:
public interface Call extends Cloneable {
// 请求
Request request();
// 同步
Response execute() throws IOException;
// 异步
void enqueue(Callback responseCallback);
// 取消请求
void cancel();
// 是否在请求过程中
boolean isExecuted();
// 是否取消
boolean isCanceled();
Call clone();
// 工厂接口
interface Factory {Call newCall(Request request);
}
}
我们发现 Call 是个接口,并定义了一些方方法 (方法含义在注释上)。
我们继续看 newCal()
方法
@Override public Call newCall(Request request) {return RealCall.newRealCall(this, request, false /* for web socket */);
}
继续点击 newRealCall()
去:
private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
this.client = client;
this.originalRequest = originalRequest;
this.forWebSocket = forWebSocket;
this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
}
static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
// Safely publish the Call instance to the EventListener.
RealCall call = new RealCall(client, originalRequest, forWebSocket);
call.eventListener = client.eventListenerFactory().create(call);
return call;
}
从代码中我们发现在 newRealCall()
中初始化了 RealCall
,RealCall
中初始化了retryAndFollowUpInterceptor
:
- client:OkHttpClient 实例
- originalRequest:最初的 Request
- forWebSocket:是否支持 websocket 通信
- retryAndFollowUpInterceptor 从字面意思来说,是重试和重定向拦截器,至于它有什么作用我们继续往下看
同步请求分析
Response response = call.execute();
我们点进 execute()
中查看:
@Override public Response execute() throws IOException {synchronized (this) {if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
try {client.dispatcher().executed(this);
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} catch (IOException e) {eventListener.callFailed(this, e);
throw e;
} finally {client.dispatcher().finished(this);
}
}
从上面代码得知步骤:
(1). 通过 synchronized
保证线程同步,判断是否已经执行过,如果是直接抛异常
(2). captureCallStackTrace();
字面意思:捕获调用堆栈跟踪,我们通过源码发现里面涉及到了retryAndFollowUpInterceptor
(3). eventListener
回调 CallStart()
(4). client.dispatcher().executed(this);
看到了dispatcher
是不是很熟悉?之前在分析 okhttpClient
初始化的时候遇到了,我们点击 executed()
方法进去:
synchronized void executed(RealCall call) {runningSyncCalls.add(call);
}
发现把我们传进来的 realcall
放到了 runningSyncCalls
队列中,从字面意思来说就是正在运行的同步的调用队列中,为什么说是队列呢?:
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
Deque 即双端队列。是一种具有队列和栈的性质的数据结构。双端队列中的元素可以从两端弹出,相比 list 增加 [] 运算符重载。
(5). 我们回到 execute()
继续往下分析,剩下的代码我们提取出三行代码:
-
equesr result = getResponseWithInterceptorChain();
生成一个 Response 实例 -
eventListener.callFailed(this, e);
:eventListener 的 callFailed 回调 -
client.dispatcher().finished(this);
:dispatcher 实例的 finished 方法
不难看出,getResponseWithInterceptorChain()
一定是此方法中的 核心 ,字面意思是获取拦截器链的响应,这就明白了,就是 通过拦截器链处理后返回 Response
getResponseWithInterceptorChain() 分析
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors()); // 自定义
interceptors.add(retryAndFollowUpInterceptor); // 错误与跟踪拦截器
interceptors.add(new BridgeInterceptor(client.cookieJar())); // 桥拦截器
interceptors.add(new CacheInterceptor(client.internalCache())); // 缓存拦截器
interceptors.add(new ConnectInterceptor(client)); // 连接拦截器
if (!forWebSocket) {interceptors.addAll(client.networkInterceptors()); // 网络拦截器
}
interceptors.add(new CallServerInterceptor(forWebSocket)); // 调用服务器拦截器
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
从上面代码不难看出,对最初的 request 做了层层拦截,每个拦截器的原理我们放在以后的章节去讲,这里就不展开了!
这里需要强调的一下 interceptors.addAll(client.interceptors());
, client.interceptors()
是我们自定义的拦截器 它是在哪定义的?如何添加?我们去 OkHttpClient 类中发现:
可以通过初始化 okHttpClient
实例 .addInterceptor
的形式 添加。
异步请求分析
call.enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {Log.d("okhttp_error",e.getMessage());
}
@Override
public void onResponse(Call call, Response response) throws IOException {Gson gson=new Gson();
Log.d("okhttp_success",response.body().string());
}
});
点击 enqueue()
查看:
@Override public void enqueue(Callback responseCallback) {synchronized (this) {if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
(1). 通过 synchronized
保证线程同步,判断是否已经执行过,如果是直接抛异常
(2). captureCallStackTrace();
字面意思:捕获调用堆栈跟踪,我们通过源码发现里面涉及到了retryAndFollowUpInterceptor
(3). eventListener
回调 CallStart()
(4). client.dispatcher().enqueue(new AsyncCall(responseCallback));
调用了Dispatcher.enqueue()
并传入了一个 new AsyncCall(responseCallback)
实例,点击 AsyncCall 查看:
AsyncCall 是 RealCall 的内部类!
final class AsyncCall extends NamedRunnable {
private final Callback responseCallback;
AsyncCall(Callback responseCallback) {super("OkHttp %s", redactedUrl());
this.responseCallback = responseCallback;
}
String host() {return originalRequest.url().host();}
Request request() {return originalRequest;}
RealCall get() {return RealCall.this;}
@Override protected void execute() {
boolean signalledCallback = false;
try {Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for" + toLoggableString(), e);
} else {eventListener.callFailed(RealCall.this, e);
responseCallback.onFailure(RealCall.this, e);
}
} finally {client.dispatcher().finished(this);
}
}
}
AsyncCall
继承了 NamedRunnable
,我们看下NamedRunnable
是什么:
public abstract class NamedRunnable implements Runnable {
protected final String name;
public NamedRunnable(String format, Object... args) {this.name = Util.format(format, args);
}
@Override public final void run() {String oldName = Thread.currentThread().getName();
Thread.currentThread().setName(name);
try {execute();
} finally {Thread.currentThread().setName(oldName);
}
}
protected abstract void execute();}
原来 NamedRunnable
实现了Runnable
接口 是个线程类,在run()
中 添加了抽象的 execute();
方法,看到这里 我们应该有一个反应,那就是 AsyncCall 中具体的 execute() 应该在子线程执行
我们继续分析,client.dispatcher().enqueue(new AsyncCall(responseCallback));
点击进入 enqueue():
synchronized void enqueue(AsyncCall call) {if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {runningAsyncCalls.add(call);
executorService().execute(call);
} else {readyAsyncCalls.add(call);
}
}
-
runningAsyncCalls
正在运行的异步请求的队列 -
maxRequests
最大的请求数 64 -
maxRequestsPerHost
host 最大请求数 5(可以通过 Get 与 Set 方式自定义设置)
如果正在运行的异步请求的队列大小低于 64 并且 正在请求的 host 数量低于 5,就会执行(满足条件)
runningAsyncCalls.add(call);
executorService().execute(call);
这里把 AsyncCall
实例添加到 runningAsyncCalls
中。ExecutorService
表示线程池 继续看 executorService()
:
public synchronized ExecutorService executorService() {if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
其实就是生成了 executorService 实例,这就明白了,AsyncCall
实例放入线程池中执行了!
如果不满足上面的请求数等条件:
readyAsyncCalls.add(call);
就会被添加到一个等待就绪的异步请求队列中,目的是什么呢???当然是等待时机再次添加到 runningAsyncCalls 中并放入线程池中执行,这块逻辑在 AsyncCall
类中的 execute()
至于原因我们继续往下看!
刚才我们说了,如果条件满足,AsyncCall
实例就会在线程池中执行 (.start),那我们直接去看 run() 中的 execute()
:
@Override protected void execute() {
boolean signalledCallback = false;
try {Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for" + toLoggableString(), e);
} else {eventListener.callFailed(RealCall.this, e);
responseCallback.onFailure(RealCall.this, e);
}
} finally {client.dispatcher().finished(this);
}
}
上面代码中得知,首先通过层层拦截器链处理生成了 response
;然后通过一系列的判断,responseCallback
进行 onResponse
与onFailure
回调,最后调用的 Dispatcher.finifshed()
这里需要注意的是 这里的 Dispatcher.finifshed(this)
与同步中的 Dispatcher.finifshed(this)
不一样 参数不同。
/** Used by {@code AsyncCall#run} to signal completion. */
void finished(AsyncCall call) {finished(runningAsyncCalls, call, true);
}
我们继续看具体的 finifshed()方法:
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {idleCallback.run();
}
}
在线程同步的情况下 执行了promoteCalls();
:
private void promoteCalls() {if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext();) {AsyncCall call = i.next();
if (runningCallsForHost(call) < maxRequestsPerHost) {i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
}
}
经过一系列的判断,对等待就绪的异步队列进行遍历,生成对应的 AsyncCall
实例,并添加到 runningAsyncCalls 中,最后放入到线程池中执行!这里就是我们上面说到的等待就绪的异步队列如何与 runningAsyncCalls 对接的逻辑。
总结
同步请求流程:
- 生成
call
实例 realcall -
Dispatcher.executed()
中的runningSyncCalls
添加 realcall 到此队列中 - 通过
getResponseWithInterceptorChain()
对 request 层层拦截,生成 Response - 通过
Dispatcher.finished()
,把 call 实例从队列中移除,返回最终的 response
异步请求流程:
- 生成一个
AsyncCall(responseCallback)
实例(实现了 Runnable) -
AsyncCall
实例放入了Dispatcher.enqueue()
中,并判断maxRequests
(最大请求数)maxRequestsPerHost
(最大 host 请求数) 是否满足条件,如果满足就把AsyncCall
添加到runningAsyncCalls
中,并放入线程池中执行;如果条件不满足,就添加到等待就绪的异步队列,当那些满足的条件的执行时,在Dispatcher.finifshed(this)
中的promoteCalls();
方法中 对等待就绪的异步队列进行遍历,生成对应的AsyncCall
实例,并添加到runningAsyncCalls
中,最后放入到线程池中执行,一直到所有请求都结束。
至此 OKhttp 整体流程就分析完了,下一篇会分块去分析,希望对大家有所帮助 …
大家可以关注我的微信公众号:「秦子帅」一个有质量、有态度的公众号!