Linux性能调优-01-平均负载的理解和分析

31次阅读

共计 3039 个字符,预计需要花费 8 分钟才能阅读完成。

01 uptime 命令

通常我们发现系统变慢时,我们都会执行 top 或者 uptime 命令,来查看当前系统的负载情况,比如像下面,我执行了 uptime,系统返回的了结果。

[root@lincoding ~]# uptime
 08:31:49 up 27 min,  1 user,  load average: 0.07, 0.04, 0.00

前几列的信息,相信大家都很熟悉,它们分别是当前时间、系统运行时间和正在登陆的用户个数,最后一个就是系统平均负载的情况。

08:31:49                        // 当前时间
up 27 min                       // 系统运行时间
1 user                          // 正在登录用户数
load average: 0.07, 0.04, 0.00  // 平均负载的情况

Load Average 的三个数字,依次则是 过去 1 分钟、5 分钟、15 分钟的平均负载。可以通过观察这三个数字的大小,可以简单判断系统的负载是下降的趋势还是上升的趋势。

  • 如果 load average: 1.00, 5.00, 10.00 三个数字依次 增大 ,则说明在过去的 1 分钟系统的负载比过去 15 分钟系统的负载,表明系统的负载是 下降 的趋势。
  • 如果 load average: 10.00, 5.00, 1.00 三个数字依次 降低 ,则说明在过去的 1 分钟系统的负载比过去 15 分钟系统的负载,表明系统的负载是 上升 的趋势。
  • 如果 load average: 0.07, 0.04, 0.0 三个数字基本相同,或者相差不大,表明系统的负载是平稳的。

所以分析系统的负载情况,必须要看三个不同时间间隔的平均值。


02 平均负载概念

平均负载很多人容易理解成单位时间内的 CPU 使用率,这是不正确的。平均负载确实与 CPU 使用率有关系,但不是直接的关系。

简单来说,平均负载是指单位时间内,系统处于 可运行状态 不可中断状态 的平均进程数,也就是 平均活跃进程数,它和 CPU 使用率并没有直接关系。

  • 可运行状态,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是在 ps 命令看到的 R 状态的进程。
  • 不可中断状态,是指正处于内核关键流程中的进程,并且这些流程是不可以打断的,比如最常见的等待硬件设备的 I/O 响应,也就是在 ps 命令看到的 D 状态的进程。

因此,平均负载其实就是平均活跃进程数,可以更直观的理解成单位时间内的活跃进程数。

既然平均的是活跃进程数,那么最理想的,就是每个 CPU 上刚好运行着一个进程,这样每个 CPU 就得到了充分利用。
比如当平均负载为 2 时,意味着:

  • 在只有 2 个 CPU 的系统上,意味着所有的 CPU 都刚好被完全占用。
  • 在 4 个 CPU 的系统上,意味着 CPU 有 50% 的空闲。
  • 在只有 1 个 CPU 的系统中,则意味着有一半的进程竞争不到 CPU。

03 平均负载为多少时合理

在评判你当前的系统平均负载是否合理的时,首先你要知道系统有几个 CPU,可以通过 lscpu 命令或者从文件 /proc/cpuinfo 中读取

# lscpu 命令查看 CPU 个数
[root@lincoding ~]# lscpu
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                4 # 这里数字表示 CPU 个数        
....

# 从文件 /proc/cpuinfo 中查看 CPU 个数
[root@lincoding ~]# grep 'model name' /proc/cpuinfo | wc -l
4

有了 CPU 个数,我们就可以判断出,当平均负载比 CPU 个数还大的时候,系统已经出现了过载。

这里我再举个例子,假设我们在一个单 CPU 系统上看到平均负载为 1.73,0.60,7.98

  • 在过去 1 分钟内,系统有 73% 的超载
  • 在过 15 分钟内,有 698% 的超载,从整体趋势来看,系统的负载在降低。

平均负载高于 CPU 数量 70% 的时候,就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。


04 平均负载与 CPU 使用率

我们经常容易把平均负载和 CPU 使用率混淆,所以在这里,我也做一个区分。

再次说明下,平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了 正在使用 CPU 的进程,还包括 等待 CPU 等待 I/O 的进程。

而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:

  • CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
  • I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
  • 大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。

05 平均负载升高分析命令

我们现在很清楚的知道导致平均负载高的情况,不只是看 CPU 的使用率,也要观察系统 I/O 等待时间高不高。

当发现平均负载升高时,可以使用 mpstat 命令查看 CPU 的性能。

# -P ALL 表示监控所有 CPU,后面数字 1 表示间隔 1 秒后输出一组数据
$ mpstat -P ALL 1
Linux 2.6.32-431.el6.x86_64 (lzc)     11/05/2019     _x86_64_    (2 CPU)

07:51:45 PM  CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
07:51:50 PM  all   42.90    0.00   49.39    0.41    0.00    4.56    0.00    0.00    2.74
07:51:50 PM    0   44.38    0.00   48.67    0.41    0.00    2.86    0.00    0.00    3.68
07:51:50 PM    1   41.57    0.00   49.80    0.40    0.00    6.43    0.00    0.00    1.81

从上面发现

  • CPU 的用户层(%usr)使用率高达 45% 左右;
  • CPU 的系统层(%sys)使用率高达 50% 左右;
  • CPU 的 I/0 – 等待(%iowait)占用率为 0.41%;
  • CPU 的空闲率(%idle)只有 2~3%。

可以推断出是由于 CPU 使用率导致平均负载升高的情况。

假设只有 CPU 的 I /0 等待(%iowait)占用率高,CPU 用户层和系统层使用率很轻松,那么导致平均负载升高的原因就是 iowait 的升高。

判断了是因为 CPU 使用率升高还是 iowait 升高导致平均负载升高后,我们还需要定位是哪个进程导致的。可以用 pidstat 来查询:

# 间隔 1 秒后输出一组数据,- u 表示 CPU 指标
$ pidstat -u 1
08:07:55 PM       PID    %usr %system  %guest    %CPU   CPU  Command
08:07:56 PM         4    0.00    1.00    0.00    1.00     0  ksoftirqd/0
08:07:56 PM         9    0.00    1.00    0.00    1.00     1  ksoftirqd/1
08:07:56 PM        11    0.00   16.00    0.00   16.00     0  events/0
08:07:56 PM        12    0.00   20.00    0.00   20.00     1  events/1
08:07:56 PM       616    7.00    6.00    0.00   13.00     1  pppoe
08:07:56 PM      2745    6.00    6.00    0.00   12.00     1  pppoe

可以发现是 events/0events/1 内核进程 CPU 使用率非常高,所以可能这两个进程导致平均负载升高。


06 小结

平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。所以,在理解平均负载时,也要注意:

  • 平均负载高有可能是 CPU 密集型进程导致的;
  • 平均负载高并不一定代表 CPU 使用率高,还有可能是 I/O 更繁忙了;
  • 当发现负载高的时候,你可以使用 mpstatpidstat 等工具,辅助分析负载的来源。

正文完
 0