共计 20162 个字符,预计需要花费 51 分钟才能阅读完成。
原文链接:https://mp.weixin.qq.com/s/oY…
这是一篇姊妹篇文章,浅析一下 Go 是如何实现 protobuf 编解码的:
- Go 是如何实现 protobuf 的编解码的(1): 原理
- Go 是如何实现 protobuf 的编解码的(2): 源码
本编是第二篇。
前言
上一篇文章 Go 是如何实现 protobuf 的编解码的(1):原理
中已经指出了 Go 语言数据和 Protobuf 数据的编解码是由包github.com/golang/protobuf/proto
完成的,本编就来分析一下 proto 包是如何实现编解码的。
编解码原理
编解码包都有支持的编解码类型,我们暂且把这些类型称为底层类型,编解码的本质是:
- 为每一个底层类型配备一个或多个编解码函数
- 把一个结构体的字段,递归的拆解成底层类型,然后选择合适的函数进行编码或解码操作
接下来先看编码,再看解码。
编码
约定:以下所有的代码片,如果是 request.pb.go 或 main.go 中的代码,会在第一行标记文件名,否则都是 proto 包的源码。
// main.go
package main
import (
"fmt"
"./types"
"github.com/golang/protobuf/proto"
)
func main() {req := &types.Request{Data: "Hello Dabin"}
// Marshal
encoded, err := proto.Marshal(req)
if err != nil {fmt.Printf("Encode to protobuf data error: %v", err)
}
...
}
编码调用的是 proto.Marshal
函数,它可以完成的是 Go 语言数据序列化成 protobuf 数据,返回序列化结果或错误。
proto 编译成的 Go 结构体都是符合 Message
接口的,从 Marshal
可知 Go 结构体有 3 种序列化方式:
-
pb Message
满足newMarshaler
接口,则调用XXX_Marshal()
进行序列化。 -
pb
满足Marshaler
接口,则调用Marshal()
进行序列化,这种方式适合某类型自定义序列化规则的情况。 - 否则,使用默认的序列化方式,创建一个 Warpper,利用 wrapper 对
pb
进行序列化,后面会介绍方式 1 实际就是使用方式 3。
// Marshal takes a protocol buffer message
// and encodes it into the wire format, returning the data.
// This is the main entry point.
func Marshal(pb Message) ([]byte, error) {if m, ok := pb.(newMarshaler); ok {siz := m.XXX_Size()
b := make([]byte, 0, siz)
return m.XXX_Marshal(b, false)
}
if m, ok := pb.(Marshaler); ok {
// If the message can marshal itself, let it do it, for compatibility.
// NOTE: This is not efficient.
return m.Marshal()}
// in case somehow we didn't generate the wrapper
if pb == nil {return nil, ErrNil}
var info InternalMessageInfo
siz := info.Size(pb)
b := make([]byte, 0, siz)
return info.Marshal(b, pb, false)
}
newMarshaler
和 Marshaler
如下:
// newMarshaler is the interface representing objects that can marshal themselves.
//
// This exists to support protoc-gen-go generated messages.
// The proto package will stop type-asserting to this interface in the future.
//
// DO NOT DEPEND ON THIS.
type newMarshaler interface {XXX_Size() int
XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
}
// Marshaler is the interface representing objects that can marshal themselves.
type Marshaler interface {Marshal() ([]byte, error)
}
Request
实现了 newMarshaler
接口,XXX_Marshal
实现如下,它实际是调用了 xxx_messageInfo_Request.Marshal
,xxx_messageInfo_Request
是定义在 request.pb.go
中的一个全局变量,类型就是InternalMessageInfo
,实际就是前文提到的 wrapper。
// request.pb.go
func (m *Request) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {print("Called xxx marshal\n")
panic("I want see stack trace")
return xxx_messageInfo_Request.Marshal(b, m, deterministic)
}
var xxx_messageInfo_Request proto.InternalMessageInfo
本质上,XXX_Marshal
也是 wrapper,后面才是真正序列化的主体函数在 proto 包中。
InternalMessageInfo
主要是用来缓存序列化和反序列化需要用到的信息。
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.
// This type is not subject to any compatibility guarantee.
type InternalMessageInfo struct {
marshal *marshalInfo // marshal 信息
unmarshal *unmarshalInfo // unmarshal 信息
merge *mergeInfo
discard *discardInfo
}
InternalMessageInfo.Marshal
首先是获取待序列化类型的序列化信息 u marshalInfo
,然后利用u.marshal
进行序列化。
// Marshal is the entry point from generated code,
// and should be ONLY called by generated code.
// It marshals msg to the end of b.
// a is a pointer to a place to store cached marshal info.
func (a *InternalMessageInfo) Marshal(b []byte, msg Message, deterministic bool) ([]byte, error) {
// 获取该 message 类型的 MarshalInfo,这些信息都缓存起来了
// 大量并发时无需重复创建
u := getMessageMarshalInfo(msg, a)
// 入参校验
ptr := toPointer(&msg)
if ptr.isNil() {// We get here if msg is a typed nil ((*SomeMessage)(nil)),
// so it satisfies the interface, and msg == nil wouldn't
// catch it. We don't want crash in this case.
return b, ErrNil
}
// 根据 MarshalInfo 对数据进行 marshal
return u.marshal(b, ptr, deterministic)
}
由于每种类型的序列化信息是一致的,所以 getMessageMarshalInfo
对序列化信息进行了缓存,缓存在 a.marshal
中,如果 a 中不存在 marshal 信息,则去生成,但不进行初始化,然后保存到 a 中。
func getMessageMarshalInfo(msg interface{}, a *InternalMessageInfo) *marshalInfo {
// u := a.marshal, but atomically.
// We use an atomic here to ensure memory consistency.
// 从 InternalMessageInfo 中读取
u := atomicLoadMarshalInfo(&a.marshal)
// 读取不到代表未保存过
if u == nil {
// Get marshal information from type of message.
t := reflect.ValueOf(msg).Type()
if t.Kind() != reflect.Ptr {panic(fmt.Sprintf("cannot handle non-pointer message type %v", t))
}
u = getMarshalInfo(t.Elem())
// Store it in the cache for later users.
// a.marshal = u, but atomically.
atomicStoreMarshalInfo(&a.marshal, u)
}
return u
}
getMarshalInfo
只是创建了一个 marshalInfo
对象,填充了字段typ
,剩余的字段未填充。
// getMarshalInfo returns the information to marshal a given type of message.
// The info it returns may not necessarily initialized.
// t is the type of the message (NOT the pointer to it).
// 获取 MarshalInfo 结构体,如果不存在则使用 message 类型 t 创建 1 个
func getMarshalInfo(t reflect.Type) *marshalInfo {marshalInfoLock.Lock()
u, ok := marshalInfoMap[t]
if !ok {u = &marshalInfo{typ: t}
marshalInfoMap[t] = u
}
marshalInfoLock.Unlock()
return u
}
// marshalInfo is the information used for marshaling a message.
type marshalInfo struct {
typ reflect.Type
fields []*marshalFieldInfo
unrecognized field // offset of XXX_unrecognized
extensions field // offset of XXX_InternalExtensions
v1extensions field // offset of XXX_extensions
sizecache field // offset of XXX_sizecache
initialized int32 // 0 -- only typ is set, 1 -- fully initialized
messageset bool // uses message set wire format
hasmarshaler bool // has custom marshaler
sync.RWMutex // protect extElems map, also for initialization
extElems map[int32]*marshalElemInfo // info of extension elements
}
marshalInfo.marshal
是 Marshal 真实主体,会判断 u 是否已经初始化,如果未初始化调用 computeMarshalInfo
计算 Marshal 需要的信息,实际就是填充 marshalInfo
中的各种字段。
u.hasmarshaler
代表当前类型是否实现了 Marshaler
接口,直接调用 Marshal 函数进行序列化。可以确定 Marshal 函数的序列化方式 2,即实现 Marshaler
接口的方法,最后肯定也会调用marshalInfo.marshal
。
该函数的主体是一个 for 循环,依次遍历该类型的每一个字段,对 required 属性进行校验,然后按字段类型,调用 f.marshaler
对该字段类型进行序列化。这个 f.marshaler
哪来的呢?
// marshal is the main function to marshal a message. It takes a byte slice and appends
// the encoded data to the end of the slice, returns the slice and error (if any).
// ptr is the pointer to the message.
// If deterministic is true, map is marshaled in deterministic order.
// 该函数是 Marshal 的主体函数,把消息编码为数据后,追加到 b 之后,最后返回 b。// deterministic 为 true 代表 map 会以确定的顺序进行编码。func (u *marshalInfo) marshal(b []byte, ptr pointer, deterministic bool) ([]byte, error) {
// 初始化 marshalInfo 的基础信息
// 主要是根据已有信息填充该结构体的一些字段
if atomic.LoadInt32(&u.initialized) == 0 {u.computeMarshalInfo()
}
// If the message can marshal itself, let it do it, for compatibility.
// NOTE: This is not efficient.
// 如果该类型实现了 Marshaler 接口,即能够对自己 Marshal,则自行 Marshal
// 结果追加到 b
if u.hasmarshaler {m := ptr.asPointerTo(u.typ).Interface().(Marshaler)
b1, err := m.Marshal()
b = append(b, b1...)
return b, err
}
var err, errLater error
// The old marshaler encodes extensions at beginning.
// 检查扩展字段,把 message 的扩展字段追加到 b
if u.extensions.IsValid() {
// offset 函数用来根据指针偏移量获取 message 的指定字段
e := ptr.offset(u.extensions).toExtensions()
if u.messageset {b, err = u.appendMessageSet(b, e, deterministic)
} else {b, err = u.appendExtensions(b, e, deterministic)
}
if err != nil {return b, err}
}
if u.v1extensions.IsValid() {m := *ptr.offset(u.v1extensions).toOldExtensions()
b, err = u.appendV1Extensions(b, m, deterministic)
if err != nil {return b, err}
}
// 遍历 message 的每一个字段,检查并做编码,然后追加到 b
for _, f := range u.fields {
if f.required {
// 如果 required 的字段未设置,则记录错误,所有的 marshal 工作完成后再处理
if ptr.offset(f.field).getPointer().isNil() {
// Required field is not set.
// We record the error but keep going, to give a complete marshaling.
if errLater == nil {errLater = &RequiredNotSetError{f.name}
}
continue
}
}
// 字段为指针类型,并且为 nil,代表未设置,该字段无需编码
if f.isPointer && ptr.offset(f.field).getPointer().isNil() {
// nil pointer always marshals to nothing
continue
}
// 利用这个字段的 marshaler 进行编码
b, err = f.marshaler(b, ptr.offset(f.field), f.wiretag, deterministic)
if err != nil {if err1, ok := err.(*RequiredNotSetError); ok {
// required 字段但未设置错误
// Required field in submessage is not set.
// We record the error but keep going, to give a complete marshaling.
if errLater == nil {errLater = &RequiredNotSetError{f.name + "." + err1.field}
}
continue
}
//“动态数组”中包含 nil 元素
if err == errRepeatedHasNil {err = errors.New("proto: repeated field" + f.name + "has nil element")
}
if err == errInvalidUTF8 {
if errLater == nil {fullName := revProtoTypes[reflect.PtrTo(u.typ)] + "." + f.name
errLater = &invalidUTF8Error{fullName}
}
continue
}
return b, err
}
}
// 为识别的类型字段,直接转为 bytes,追加到 b
// computeMarshalInfo 中已经收集这些字段
if u.unrecognized.IsValid() {s := *ptr.offset(u.unrecognized).toBytes()
b = append(b, s...)
}
return b, errLater
}
computeMarshalInfo
实际上就是对要序列化的类型,进行一次全面检查,设置好序列化要使用的数据,这其中就包含了各字段的序列化函数 f.marshaler
。我们就重点关注下这部分,struct 的每一个字段都会分配一个marshalFieldInfo
,代表这个字段序列化需要的信息,会调用computeMarshalFieldInfo
会填充这个对象。
// computeMarshalInfo initializes the marshal info.
func (u *marshalInfo) computeMarshalInfo() {
// 加锁,代表了不能同时计算 marshal 信息
u.Lock()
defer u.Unlock()
// 计算 1 次即可
if u.initialized != 0 { // non-atomic read is ok as it is protected by the lock
return
}
// 获取要 marshal 的 message 类型
t := u.typ
u.unrecognized = invalidField
u.extensions = invalidField
u.v1extensions = invalidField
u.sizecache = invalidField
// If the message can marshal itself, let it do it, for compatibility.
// 判断当前类型是否实现了 Marshal 接口,如果实现标记为类型自有 marshaler
// 没用类型断言是因为 t 是 Type 类型,不是保存在某个接口的变量
// NOTE: This is not efficient.
if reflect.PtrTo(t).Implements(marshalerType) {
u.hasmarshaler = true
atomic.StoreInt32(&u.initialized, 1)
// 可以直接返回了,后面使用自有的 marshaler 编码
return
}
// get oneof implementers
// 看 * t 实现了以下哪个接口,oneof 特性
var oneofImplementers []interface{}
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()}
n := t.NumField()
// deal with XXX fields first
// 遍历 t 的每一个 XXX 字段
for i := 0; i < t.NumField(); i++ {f := t.Field(i)
// 跳过非 XXX 开头的字段
if !strings.HasPrefix(f.Name, "XXX_") {continue}
// 处理以下几个 protobuf 自带的字段
switch f.Name {
case "XXX_sizecache":
u.sizecache = toField(&f)
case "XXX_unrecognized":
u.unrecognized = toField(&f)
case "XXX_InternalExtensions":
u.extensions = toField(&f)
u.messageset = f.Tag.Get("protobuf_messageset") == "1"
case "XXX_extensions":
u.v1extensions = toField(&f)
case "XXX_NoUnkeyedLiteral":
// nothing to do
default:
panic("unknown XXX field:" + f.Name)
}
n--
}
// normal fields
// 处理 message 的普通字段
fields := make([]marshalFieldInfo, n) // batch allocation
u.fields = make([]*marshalFieldInfo, 0, n)
for i, j := 0, 0; i < t.NumField(); i++ {f := t.Field(i)
// 跳过 XXX 字段
if strings.HasPrefix(f.Name, "XXX_") {continue}
// 取 fields 的下一个有效字段,指针类型
// j 代表了 fields 有效字段数量,n 是包含了 XXX 字段的总字段数量
field := &fields[j]
j++
field.name = f.Name
// 填充到 u.fields
u.fields = append(u.fields, field)
// 字段的 tag 里包含“protobuf_oneof”特殊处理
if f.Tag.Get("protobuf_oneof") != "" {field.computeOneofFieldInfo(&f, oneofImplementers)
continue
}
// 字段里不包含“protobuf”,代表不是 protoc 自动生成的字段
if f.Tag.Get("protobuf") == "" {// field has no tag (not in generated message), ignore it
// 删除刚刚保存的字段信息
u.fields = u.fields[:len(u.fields)-1]
j--
continue
}
// 填充字段的 marshal 信息
field.computeMarshalFieldInfo(&f)
}
// fields are marshaled in tag order on the wire.
// 字段排序
sort.Sort(byTag(u.fields))
// 初始化完成
atomic.StoreInt32(&u.initialized, 1)
}
回顾一下 Request
的定义,它包含 1 个字段 Data,后面 protobuf:...
描述了 protobuf 要使用的信息,"bytes,..."
这段被称为 tags,用逗号进行分割后,其中:
- tags[0]: bytes,代表 Data 类型的数据要被转换为 bytes
- tags[1]: 1,代表了字段的 ID
- tags[2]: opt,代表可行,非必须
- tags[3]: name=data,proto 文件中的名称
- tags[4]: proto3,代表使用的 protobuf 版本
// request.pb.go
type Request struct{
Data string `protobuf:"bytes,1,opt,name=data,proto3" json:"data,omitempty"`
...
}
computeMarshalFieldInfo
首先要获取字段 ID 和要转换的类型,填充到 marshalFieldInfo
,然后调用setMarshaler
利用字段 f 和 tags 获取该字段类型的序列化函数。
// computeMarshalFieldInfo fills up the information to marshal a field.
func (fi *marshalFieldInfo) computeMarshalFieldInfo(f *reflect.StructField) {
// parse protobuf tag of the field.
// tag has format of "bytes,49,opt,name=foo,def=hello!"
// 获取 "protobuf" 的完整 tag,然后使用,分割,得到上面的格式
tags := strings.Split(f.Tag.Get("protobuf"), ",")
if tags[0] == "" {return}
// tag 的编号,即 message 中设置的 string name = x,则 x 就是这个字段的 tag id
tag, err := strconv.Atoi(tags[1])
if err != nil {panic("tag is not an integer")
}
// 要转换成的类型,bytes,varint 等等
wt := wiretype(tags[0])
// 设置字段是 required 还是 opt
if tags[2] == "req" {fi.required = true}
// 设置 field 和 tag 信息到 marshalFieldInfo
fi.setTag(f, tag, wt)
// 根据当前的 tag 信息(类型等),选择 marshaler 函数
fi.setMarshaler(f, tags)
}
setMarshaler
的重点是 typeMarshaler
,typeMarshaler
这个函数非常长,其实就是根据类型设置返回对于的序列化函数,比如 Bool、Int32、Uint32…,如果是结构体、切片等复合类型,就可以形成递归了。
// setMarshaler fills up the sizer and marshaler in the info of a field.
func (fi *marshalFieldInfo) setMarshaler(f *reflect.StructField, tags []string) {
// map 类型字段特殊处理
switch f.Type.Kind() {
case reflect.Map:
// map field
fi.isPointer = true
fi.sizer, fi.marshaler = makeMapMarshaler(f)
return
case reflect.Ptr, reflect.Slice:
// 指针字段和切片字段标记指针类型
fi.isPointer = true
}
// 根据字段类型和 tag 选择 marshaler
fi.sizer, fi.marshaler = typeMarshaler(f.Type, tags, true, false)
}
// typeMarshaler returns the sizer and marshaler of a given field.
// t is the type of the field.
// tags is the generated "protobuf" tag of the field.
// If nozero is true, zero value is not marshaled to the wire.
// If oneof is true, it is a oneof field.
// 函数非常长,省略内容
func typeMarshaler(t reflect.Type, tags []string, nozero, oneof bool) (sizer, marshaler) {
...
switch t.Kind() {
case reflect.Bool:
if pointer {return sizeBoolPtr, appendBoolPtr}
if slice {
if packed {return sizeBoolPackedSlice, appendBoolPackedSlice}
return sizeBoolSlice, appendBoolSlice
}
if nozero {return sizeBoolValueNoZero, appendBoolValueNoZero}
return sizeBoolValue, appendBoolValue
case reflect.Uint32:
...
case reflect.Int32:
....
case reflect.Struct:
...
}
以下是 Bool 和 String 类型的 2 个序列化函数示例:
func appendBoolValue(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {v := *ptr.toBool()
b = appendVarint(b, wiretag)
if v {b = append(b, 1)
} else {b = append(b, 0)
}
return b, nil
}
func appendStringValue(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {v := *ptr.toString()
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
return b, nil
}
所以序列化后的[]byte
,应当是符合这种模式:
| wiretag | data | wiretag | data | ... | data |
OK,以上就是编码的主要流程,简单回顾一下:
-
proto.Marshal
会调用*.pb.go
中自动生成的 Wrapper 函数,Wrapper 函数会调用InternalMessageInfo
进行序列化,然后才步入序列化的正题 - 首先获取要序列化类型的 marshal 信息 u,如果 u 没有初始化,则进行初始化,即设置好结构体每个字段的序列化函数,以及其他信息
- 遍历结构体的每个字段,使用 u 中的信息为每个字段进行编码,并把加过追加到
[]byte
,所以字段编码完成,则返回序列化的结果[]byte
或者错误。
解码
解码的流程其实与编码很类似,会是上面回顾的 3 大步骤,主要的区别在步骤 2:它要获取的是序列化类型的 unmarshal 信息 u,如果 u 没有初始化,会进行初始化,设置的是结构体每个字段的反序列化函数,以及其他信息。
所以解码的函数解析会简要的过一遍,不再有编码那么详细的解释。
下面是 proto 包中反序列化的接口和函数定义:
// Unmarshaler is the interface representing objects that can
// unmarshal themselves. The argument points to data that may be
// overwritten, so implementations should not keep references to the
// buffer.
// Unmarshal implementations should not clear the receiver.
// Any unmarshaled data should be merged into the receiver.
// Callers of Unmarshal that do not want to retain existing data
// should Reset the receiver before calling Unmarshal.
type Unmarshaler interface {Unmarshal([]byte) error
}
// newUnmarshaler is the interface representing objects that can
// unmarshal themselves. The semantics are identical to Unmarshaler.
//
// This exists to support protoc-gen-go generated messages.
// The proto package will stop type-asserting to this interface in the future.
//
// DO NOT DEPEND ON THIS.
type newUnmarshaler interface {
// 实现了 XXX_Unmarshal
XXX_Unmarshal([]byte) error
}
// Unmarshal parses the protocol buffer representation in buf and places the
// decoded result in pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
//
// Unmarshal resets pb before starting to unmarshal, so any
// existing data in pb is always removed. Use UnmarshalMerge
// to preserve and append to existing data.
func Unmarshal(buf []byte, pb Message) error {pb.Reset()
// pb 自己有 unmarshal 函数,实现了 newUnmarshaler 接口
if u, ok := pb.(newUnmarshaler); ok {return u.XXX_Unmarshal(buf)
}
// pb 自己有 unmarshal 函数,实现了 Unmarshaler 接口
if u, ok := pb.(Unmarshaler); ok {return u.Unmarshal(buf)
}
// 使用默认的 Unmarshal
return NewBuffer(buf).Unmarshal(pb)
}
Request
实现了 Unmarshaler
接口:
// request.pb.go
func (m *Request) XXX_Unmarshal(b []byte) error {return xxx_messageInfo_Request.Unmarshal(m, b)
}
反序列化也是使用 InternalMessageInfo
进行。
// Unmarshal is the entry point from the generated .pb.go files.
// This function is not intended to be used by non-generated code.
// This function is not subject to any compatibility guarantee.
// msg contains a pointer to a protocol buffer struct.
// b is the data to be unmarshaled into the protocol buffer.
// a is a pointer to a place to store cached unmarshal information.
func (a *InternalMessageInfo) Unmarshal(msg Message, b []byte) error {
// Load the unmarshal information for this message type.
// The atomic load ensures memory consistency.
// 获取保存在 a 中的 unmarshal 信息
u := atomicLoadUnmarshalInfo(&a.unmarshal)
if u == nil {
// Slow path: find unmarshal info for msg, update a with it.
u = getUnmarshalInfo(reflect.TypeOf(msg).Elem())
atomicStoreUnmarshalInfo(&a.unmarshal, u)
}
// Then do the unmarshaling.
// 执行 unmarshal
err := u.unmarshal(toPointer(&msg), b)
return err
}
以下是反序列化的主题函数,u 未初始化时会调用 computeUnmarshalInfo
设置反序列化需要的信息。
// unmarshal does the main work of unmarshaling a message.
// u provides type information used to unmarshal the message.
// m is a pointer to a protocol buffer message.
// b is a byte stream to unmarshal into m.
// This is top routine used when recursively unmarshaling submessages.
func (u *unmarshalInfo) unmarshal(m pointer, b []byte) error {if atomic.LoadInt32(&u.initialized) == 0 {
// 为 u 填充 unmarshal 信息,以及设置每个字段类型的 unmarshaler 函数
u.computeUnmarshalInfo()}
if u.isMessageSet {return unmarshalMessageSet(b, m.offset(u.extensions).toExtensions())
}
var reqMask uint64 // bitmask of required fields we've seen.
var errLater error
for len(b) > 0 {
// Read tag and wire type.
// Special case 1 and 2 byte varints.
var x uint64
if b[0] < 128 {x = uint64(b[0])
b = b[1:]
} else if len(b) >= 2 && b[1] < 128 {x = uint64(b[0]&0x7f) + uint64(b[1])<<7
b = b[2:]
} else {
var n int
x, n = decodeVarint(b)
if n == 0 {return io.ErrUnexpectedEOF}
b = b[n:]
}
// 获取 tag 和 wire 标记
tag := x >> 3
wire := int(x) & 7
// Dispatch on the tag to one of the unmarshal* functions below.
// 根据 tag 选择该类型的 unmarshalFieldInfo:f
var f unmarshalFieldInfo
if tag < uint64(len(u.dense)) {f = u.dense[tag]
} else {f = u.sparse[tag]
}
// 如果该类型有 unmarshaler 函数,则执行解码和错误处理
if fn := f.unmarshal; fn != nil {
var err error
// 从 b 解析,然后填充到 f 的对应字段
b, err = fn(b, m.offset(f.field), wire)
if err == nil {
reqMask |= f.reqMask
continue
}
if r, ok := err.(*RequiredNotSetError); ok {
// Remember this error, but keep parsing. We need to produce
// a full parse even if a required field is missing.
if errLater == nil {errLater = r}
reqMask |= f.reqMask
continue
}
if err != errInternalBadWireType {
if err == errInvalidUTF8 {
if errLater == nil {fullName := revProtoTypes[reflect.PtrTo(u.typ)] + "." + f.name
errLater = &invalidUTF8Error{fullName}
}
continue
}
return err
}
// Fragments with bad wire type are treated as unknown fields.
}
// Unknown tag.
// 跳过未知 tag,可能是 proto 中的 message 定义升级了,增加了一些字段,使用老版本的,就不识别新的字段
if !u.unrecognized.IsValid() {
// Don't keep unrecognized data; just skip it.
var err error
b, err = skipField(b, wire)
if err != nil {return err}
continue
}
// 检查未识别字段是不是 extension
// Keep unrecognized data around.
// maybe in extensions, maybe in the unrecognized field.
z := m.offset(u.unrecognized).toBytes()
var emap map[int32]Extension
var e Extension
for _, r := range u.extensionRanges {if uint64(r.Start) <= tag && tag <= uint64(r.End) {if u.extensions.IsValid() {mp := m.offset(u.extensions).toExtensions()
emap = mp.extensionsWrite()
e = emap[int32(tag)]
z = &e.enc
break
}
if u.oldExtensions.IsValid() {p := m.offset(u.oldExtensions).toOldExtensions()
emap = *p
if emap == nil {emap = map[int32]Extension{}
*p = emap
}
e = emap[int32(tag)]
z = &e.enc
break
}
panic("no extensions field available")
}
}
// Use wire type to skip data.
var err error
b0 := b
b, err = skipField(b, wire)
if err != nil {return err}
*z = encodeVarint(*z, tag<<3|uint64(wire))
*z = append(*z, b0[:len(b0)-len(b)]...)
if emap != nil {emap[int32(tag)] = e
}
}
// 校验解析到的 required 字段的数量,如果与 u 中记录的不匹配,则报错
if reqMask != u.reqMask && errLater == nil {
// A required field of this message is missing.
for _, n := range u.reqFields {
if reqMask&1 == 0 {errLater = &RequiredNotSetError{n}
}
reqMask >>= 1
}
}
return errLater
}
设置字段反序列化函数的过程不看了,看一下怎么选函数的,typeUnmarshaler
是为字段类型,选择反序列化函数,这些函数选择与序列化函数是一一对应的。
// typeUnmarshaler returns an unmarshaler for the given field type / field tag pair.
func typeUnmarshaler(t reflect.Type, tags string) unmarshaler {
...
// Figure out packaging (pointer, slice, or both)
slice := false
pointer := false
if t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8 {
slice = true
t = t.Elem()}
if t.Kind() == reflect.Ptr {
pointer = true
t = t.Elem()}
...
switch t.Kind() {
case reflect.Bool:
if pointer {return unmarshalBoolPtr}
if slice {return unmarshalBoolSlice}
return unmarshalBoolValue
}
}
unmarshalBoolValue
是默认的 Bool 类型反序列化函数,会把 protobuf 数据 b 解码,然后转换为 bool 类型 v,最后赋值给字段 f。
func unmarshalBoolValue(b []byte, f pointer, w int) ([]byte, error) {
if w != WireVarint {return b, errInternalBadWireType}
// Note: any length varint is allowed, even though any sane
// encoder will use one byte.
// See https://github.com/golang/protobuf/issues/76
x, n := decodeVarint(b)
if n == 0 {return nil, io.ErrUnexpectedEOF}
// TODO: check if x>1? Tests seem to indicate no.
// toBool 是返回 bool 类型的指针
// 完成对字段 f 的赋值
v := x != 0
*f.toBool() = v
return b[n:], nil
}
总结
本文分析了 Go 语言 protobuf 数据的序列化和反序列过程,可以简要概括为:
-
proto.Marshal
和proto.Unmarshal
会调用*.pb.go
中自动生成的 Wrapper 函数,Wrapper 函数会调用InternalMessageInfo
进行 (反) 序列化,然后才步入 (反) 序列化的正题 - 首先获取要目标类型的 (um)marshal 信息 u,如果 u 没有初始化,则进行初始化,即设置好结构体每个字段的(反) 序列化函数,以及其他信息
- 遍历结构体的每个字段,使用 u 中的信息为每个字段进行编码,生成序列化的结果,或进行解码,给结构体成员进行赋值
参考文章
以下参考文章都值得阅读:
-
https://tech.meituan.com/2015…
《序列化和反序列化》出自美团技术团队,值得一读。 -
https://github.com/golang/pro…
Go 支持 protocol buffer 的仓库,Readme,值得详读。 -
https://developers.google.com…
Google Protocol Buffers 的 Go 语言 tutorial,值得详细阅读和实操。 -
https://developers.google.com…
Google Protocol Buffers 的 Overview,介绍了什么是 Protocol Buffers,它的原理、历史(起源),以及和 XML 的对比,必读。 -
https://developers.google.com…
《Language Guide (proto3)》这篇文章介绍了 proto3 的定义,也可以理解为.proto
文件的语法,就如同 Go 语言的语法,不懂语法怎么编写.proto
文件?读这篇文章会了解很多原理,以及可以少踩坑,必读。 -
https://developers.google.com…
《Go Generated Code》这篇文章详细介绍了 protoc 是怎么用.protoc
生成.pb.go
的,可选。 -
https://developers.google.com…
《Protocol Buffers Encoding》这篇介绍编码原理,可选。 -
https://godoc.org/github.com/…
《package proto 文档》可以把 proto 包当做 Go 语言操作 protobuf 数据的 SDK,它实现了结构体和 protobuf 数据的转换,它和.pb.go
文件配合使用。