共计 20588 个字符,预计需要花费 52 分钟才能阅读完成。
本文首发于 vivo 互联网技术 微信公众号
链接:https://mp.weixin.qq.com/s/cPLkefpEb3w12-uoiqzTig
作者:连凌能
Android 上图片加载的解决方案有多种,但是官方认可的是 Glide。Glide 提供简洁易用的 api,整个框架也方便扩展,比如可以替换网络请求库,同时也提供了完备的缓存机制,应用层不需要自己去管理图片的缓存与获取,框架会分成内存缓存,文件缓存和远程缓存。本文不会从简单的使用着手,会把重点放在缓存机制的分析上。
一、综述
开始之前,关于 Glide 缓存请先思考几个问题:
- Glide 有几级缓存?
- Glide 内存缓存之间是什么关系?
- Glide 本地文件 IO 和网络请求是一个线程吗?如果不是,怎么实现线程切换?
- Glide 网络请求回来后数据直接返回给用户还是先存再返回?
加载开始入口从 Engine.load() 开始,先看下对这个方法的注释,
- 会先检查 (Active Resources),如果有就直接返回,Active Resources 没有被引用的资源会放入 Memory Cache,如果 Active Resources 没有,会往下走。
- 检查 Memory Cache 中是否有需要的资源,如果有就返回,Memory Cache 中没有就继续往下走。
- 检查当前在运行中的 job 中是否有改资源的下载,有就在现有的 job 中直接添加 callback 返回,不重复下载,当然前提是计算得到的 key 是一致的,如果还是没有,就会构造一个新的 job 开始新的工作。
* Starts a load for the given arguments.
*
* <p>Must be called on the main thread.
*
* <p>The flow for any request is as follows:
* <ul>
* <li>Check the current set of actively used resources, return the active resource if
* present, and move any newly inactive resources into the memory cache.</li>
* <li>Check the memory cache and provide the cached resource if present.</li>
* <li>Check the current set of in progress loads and add the cb to the in progress load if
* one is present.</li>
* <li>Start a new load.</li>
* </ul>
ok, find the source code.
二、内存缓存
public <R> LoadStatus load(
GlideContext glideContext,
Object model,
Key signature,
int width,
int height,
Class<?> resourceClass,
Class<R> transcodeClass,
Priority priority,
DiskCacheStrategy diskCacheStrategy,
Map<Class<?>, Transformation<?>> transformations,
boolean isTransformationRequired,
boolean isScaleOnlyOrNoTransform,
Options options,
boolean isMemoryCacheable,
boolean useUnlimitedSourceExecutorPool,
boolean useAnimationPool,
boolean onlyRetrieveFromCache,
ResourceCallback cb) {Util.assertMainThread();
long startTime = VERBOSE_IS_LOGGABLE ? LogTime.getLogTime() : 0;
EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations,
resourceClass, transcodeClass, options);
// focus 1
EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
if (active != null) {cb.onResourceReady(active, DataSource.MEMORY_CACHE);
if (VERBOSE_IS_LOGGABLE) {logWithTimeAndKey("Loaded resource from active resources", startTime, key);
}
return null;
}
// focus 2
EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
if (cached != null) {cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
if (VERBOSE_IS_LOGGABLE) {logWithTimeAndKey("Loaded resource from cache", startTime, key);
}
return null;
}
// focus 3
EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
if (current != null) {current.addCallback(cb);
if (VERBOSE_IS_LOGGABLE) {logWithTimeAndKey("Added to existing load", startTime, key);
}
return new LoadStatus(cb, current);
}
EngineJob<R> engineJob =
engineJobFactory.build(
key,
isMemoryCacheable,
useUnlimitedSourceExecutorPool,
useAnimationPool,
onlyRetrieveFromCache);
DecodeJob<R> decodeJob =
decodeJobFactory.build(
glideContext,
model,
key,
signature,
width,
height,
resourceClass,
transcodeClass,
priority,
diskCacheStrategy,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
onlyRetrieveFromCache,
options,
engineJob);
jobs.put(key, engineJob);
engineJob.addCallback(cb);
// focus 4
engineJob.start(decodeJob);
if (VERBOSE_IS_LOGGABLE) {logWithTimeAndKey("Started new load", startTime, key);
}
return new LoadStatus(cb, engineJob);
}
先看到 focus 1, 这一步会从 ActiveResources 中加载资源,首先判断是否使用内存缓存,否的话返回 null;否则到 ActiveResources 中取数据:
// Engine.java
@Nullable
private EngineResource<?> loadFromActiveResources(Key key, boolean isMemoryCacheable) {if (!isMemoryCacheable) {return null;}
EngineResource<?> active = activeResources.get(key);
if (active != null) {active.acquire();
}
return active;
}
接下来看下 ActiveResources, 其实是用过弱引用保存使用过的资源。
final class ActiveResources {
...
private final Handler mainHandler = new Handler(Looper.getMainLooper(), new Callback() {
@Override
public boolean handleMessage(Message msg) {if (msg.what == MSG_CLEAN_REF) {cleanupActiveReference((ResourceWeakReference) msg.obj);
return true;
}
return false;
}
});
@VisibleForTesting
final Map<Key, ResourceWeakReference> activeEngineResources = new HashMap<>();
...
}
成功取到数据后回调类型也是内存缓存:
EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
if (cached != null) {cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
return null;
}
接着回到 Engine.load() 中继续看到 focus 2, 如果在 cache 中找到就是 remove 掉,然后返回 EngineResource,其中需要 EngineResource 进行 acquire 一下,这个后面再看,然后会把资源移到 ActiveResources 中,也就是上面提到的缓存:
// Engine.java
private final MemoryCache cache;
private EngineResource<?> loadFromCache(Key key, boolean isMemoryCacheable) {if (!isMemoryCacheable) {return null;}
EngineResource<?> cached = getEngineResourceFromCache(key);
if (cached != null) {cached.acquire();
activeResources.activate(key, cached);
}
return cached;
}
private EngineResource<?> getEngineResourceFromCache(Key key) {Resource<?> cached = cache.remove(key);
final EngineResource<?> result;
if (cached == null) {result = null;} else if (cached instanceof EngineResource) {// Save an object allocation if we've cached an EngineResource (the typical case).
result = (EngineResource<?>) cached;
} else {result = new EngineResource<>(cached, true /*isMemoryCacheable*/, true /*isRecyclable*/);
}
return result;
}
其中 cache 是 MemoryCache 接口的实现,如果没设置,默认在 build 的时候是 LruResourceCache, 也就是熟悉的 LRU Cache:
// GlideBuilder.java
if (memoryCache == null) {memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize());
}
再看下 EngineResource,主要是对资源增加了引用计数的功能:
// EngineResource.java
private final boolean isCacheable;
private final boolean isRecyclable;
private ResourceListener listener;
private Key key;
private int acquired;
private boolean isRecycled;
private final Resource<Z> resource;
interface ResourceListener {void onResourceReleased(Key key, EngineResource<?> resource);
}
EngineResource(Resource<Z> toWrap, boolean isCacheable, boolean isRecyclable) {resource = Preconditions.checkNotNull(toWrap);
this.isCacheable = isCacheable;
this.isRecyclable = isRecyclable;
}
void setResourceListener(Key key, ResourceListener listener) {
this.key = key;
this.listener = listener;
}
Resource<Z> getResource() {return resource;}
boolean isCacheable() {return isCacheable;}
@NonNull
@Override
public Class<Z> getResourceClass() {return resource.getResourceClass();
}
@NonNull
@Override
public Z get() {return resource.get();
}
@Override
public int getSize() {return resource.getSize();
}
@Override
public void recycle() {if (acquired > 0) {throw new IllegalStateException("Cannot recycle a resource while it is still acquired");
}
if (isRecycled) {throw new IllegalStateException("Cannot recycle a resource that has already been recycled");
}
isRecycled = true;
if (isRecyclable) {resource.recycle();
}
}
void acquire() {if (isRecycled) {throw new IllegalStateException("Cannot acquire a recycled resource");
}
if (!Looper.getMainLooper().equals(Looper.myLooper())) {throw new IllegalThreadStateException("Must call acquire on the main thread");
}
++acquired;
}
void release() {if (acquired <= 0) {throw new IllegalStateException("Cannot release a recycled or not yet acquired resource");
}
if (!Looper.getMainLooper().equals(Looper.myLooper())) {throw new IllegalThreadStateException("Must call release on the main thread");
}
if (--acquired == 0) {listener.onResourceReleased(key, this);
}
}
在 release 后会判断引用计数是否为 0,如果是 0 就会回调 onResourceReleased, 在这里就是 Engine, 然后会把资源从 ActiveResources 中移除,资源默认是可缓存的,因此会把资源放到 LruCache 中。
// Engine.java
@Override
public void onResourceReleased(Key cacheKey, EngineResource<?> resource) {Util.assertMainThread();
activeResources.deactivate(cacheKey);
if (resource.isCacheable()) {cache.put(cacheKey, resource);
} else {resourceRecycler.recycle(resource);
}
}
// ActiveResources.java
void activate(Key key, EngineResource<?> resource) {
ResourceWeakReference toPut =
new ResourceWeakReference(
key,
resource,
getReferenceQueue(),
isActiveResourceRetentionAllowed);
ResourceWeakReference removed = activeEngineResources.put(key, toPut);
if (removed != null) {removed.reset();
}
}
void deactivate(Key key) {ResourceWeakReference removed = activeEngineResources.remove(key);
if (removed != null) {removed.reset();
}
}
如果是回收呢,看看上面的 EngineResource,如果引用计数为 0 并且还没与回收,就会调用真正的 Resource.recycle(), 看其中的一个 BitmapResource 是怎么回收的, 就是放到 Bitmap 池中,也是用的 LRU Cache,这个和今天的主题不相关,就不继续往下拓展。
// BitmapResource.java
@Override
public void recycle() {bitmapPool.put(bitmap);
}
思路再拉到 Engine.load() 的流程中,接下来该看 focus 3, 这里再贴一下代码, 如果 job 已经在运行了,那么直接添加一个回调后返回 LoadStatus, 这个可以允许用户取消任务:
// Engine.java
EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
if (current != null) {current.addCallback(cb);
if (VERBOSE_IS_LOGGABLE) {logWithTimeAndKey("Added to existing load", startTime, key);
}
return new LoadStatus(cb, current);
}
// LoadStatus
public static class LoadStatus {
private final EngineJob<?> engineJob;
private final ResourceCallback cb;
LoadStatus(ResourceCallback cb, EngineJob<?> engineJob) {
this.cb = cb;
this.engineJob = engineJob;
}
public void cancel() {engineJob.removeCallback(cb);
}
}
接着往下看到 focus 4, 到这里就需要创建后台任务去拉取磁盘文件或者发起网络请求。
三、磁盘缓存
// Engine.java
EngineJob<R> engineJob =
engineJobFactory.build(
key,
isMemoryCacheable,
useUnlimitedSourceExecutorPool,
useAnimationPool,
onlyRetrieveFromCache);
DecodeJob<R> decodeJob =
decodeJobFactory.build(
glideContext,
model,
key,
signature,
width,
height,
resourceClass,
transcodeClass,
priority,
diskCacheStrategy,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
onlyRetrieveFromCache,
options,
engineJob);
jobs.put(key, engineJob);
engineJob.addCallback(cb);
engineJob.start(decodeJob);
return new LoadStatus(cb, engineJob);
先构造两个 job,一个是 EngineJob, 另外一个 DecodeJob, 其中 DecodeJob 会根据需要解码的资源来源分成下面几个阶段:
// DecodeJob.java
/**
* Where we're trying to decode data from.
*/
private enum Stage {
/** The initial stage. */
INITIALIZE,
/** Decode from a cached resource. */
RESOURCE_CACHE,
/** Decode from cached source data. */
DATA_CACHE,
/** Decode from retrieved source. */
SOURCE,
/** Encoding transformed resources after a successful load. */
ENCODE,
/** No more viable stages. */
FINISHED,
}
在构造 DecodeJob 时会把状态置为 INITIALIZE。
构造完两个 Job 后会调用 EngineJob.start(DecodeJob),首先会调用 getNextStage 来确定下一个阶段,这里面跟 DiskCacheStrategy 这个传入的磁盘缓存策略有关。
磁盘策略有下面几种:
- ALL: 缓存原始数据和转换后的数据
- NONE: 不缓存
- DATA: 原始数据,未经过解码或者转换
- RESOURCE: 缓存经过解码的数据
- AUTOMATIC(默认): 根据 `EncodeStrategy` 和 `DataSource` 等条件自动选择合适的缓存方
默认的 AUTOMATIC 方式是允许解码缓存的 RESOURCE:
public static final DiskCacheStrategy AUTOMATIC = new DiskCacheStrategy() {
@Override
public boolean isDataCacheable(DataSource dataSource) {return dataSource == DataSource.REMOTE;}
@Override
public boolean isResourceCacheable(boolean isFromAlternateCacheKey, DataSource dataSource,
EncodeStrategy encodeStrategy) {return ((isFromAlternateCacheKey && dataSource == DataSource.DATA_DISK_CACHE)
|| dataSource == DataSource.LOCAL)
&& encodeStrategy == EncodeStrategy.TRANSFORMED;
}
@Override
public boolean decodeCachedResource() {return true;}
@Override
public boolean decodeCachedData() {return true;}
};
所以在 getNextStage 会先返回 Stage.RESOURCE_CACHE, 然后在 start 中会返回 diskCacheExecutor, 然后开始执行 DecodeJob:
// EngineJob.java
public void start(DecodeJob<R> decodeJob) {
this.decodeJob = decodeJob;
GlideExecutor executor = decodeJob.willDecodeFromCache()
? diskCacheExecutor
: getActiveSourceExecutor();
executor.execute(decodeJob);
}
// DecodeJob.java
boolean willDecodeFromCache() {Stage firstStage = getNextStage(Stage.INITIALIZE);
return firstStage == Stage.RESOURCE_CACHE || firstStage == Stage.DATA_CACHE;
}
private Stage getNextStage(Stage current) {switch (current) {
case INITIALIZE:
return diskCacheStrategy.decodeCachedResource()
? Stage.RESOURCE_CACHE : getNextStage(Stage.RESOURCE_CACHE);
case RESOURCE_CACHE:
return diskCacheStrategy.decodeCachedData()
? Stage.DATA_CACHE : getNextStage(Stage.DATA_CACHE);
case DATA_CACHE:
// Skip loading from source if the user opted to only retrieve the resource from cache.
return onlyRetrieveFromCache ? Stage.FINISHED : Stage.SOURCE;
case SOURCE:
case FINISHED:
return Stage.FINISHED;
default:
throw new IllegalArgumentException("Unrecognized stage:" + current);
}
}
DecodeJob 会回调 run() 开始执行, run() 中调用 runWrapped 执行工作, 这里 runReason 还是 RunReason.INITIALIZE,根据前面的分析指导这里会获得一个 ResourceCacheGenerator, 然后调用 runGenerators:
// DecodeJob.java
private void runWrapped() {switch (runReason) {
case INITIALIZE:
stage = getNextStage(Stage.INITIALIZE);
currentGenerator = getNextGenerator();
runGenerators();
break;
case SWITCH_TO_SOURCE_SERVICE:
runGenerators();
break;
case DECODE_DATA:
decodeFromRetrievedData();
break;
default:
throw new IllegalStateException("Unrecognized run reason:" + runReason);
}
}
private DataFetcherGenerator getNextGenerator() {switch (stage) {
case RESOURCE_CACHE:
return new ResourceCacheGenerator(decodeHelper, this);
case DATA_CACHE:
return new DataCacheGenerator(decodeHelper, this);
case SOURCE:
return new SourceGenerator(decodeHelper, this);
case FINISHED:
return null;
default:
throw new IllegalStateException("Unrecognized stage:" + stage);
}
}
在 runGenerators 中,会调用 startNext, 目前 currentGenerator 是 ResourceCacheGenerator, 那么就是调用它的 startNext 方法:
// DecodeJob.java
private void runGenerators() {currentThread = Thread.currentThread();
startFetchTime = LogTime.getLogTime();
boolean isStarted = false;
while (!isCancelled && currentGenerator != null
&& !(isStarted = currentGenerator.startNext())) {stage = getNextStage(stage);
currentGenerator = getNextGenerator();
if (stage == Stage.SOURCE) {reschedule();
return;
}
}
// We've run out of stages and generators, give up.
if ((stage == Stage.FINISHED || isCancelled) && !isStarted) {notifyFailed();
}
}
看下 ResourceCacheGenerator.startNext(), 这里面就是重点逻辑了,首先从 Registry 中获取支持资源类型的 ModelLoader( 其中 ModelLoader 是在构造 Glide 的时候传进去), 然后从 ModelLoader 中构造 LoadData, 接着就能拿到 DataFetcher,(关于 ModelLoader/LoadData/DataFetcher 之间的关系不在本次范围内,后面有机会再另写) 通过它的 loadData 方法加载数据:
@Override
public boolean startNext() {List<Key> sourceIds = helper.getCacheKeys();
if (sourceIds.isEmpty()) {return false;}
List<Class<?>> resourceClasses = helper.getRegisteredResourceClasses();
if (resourceClasses.isEmpty()) {if (File.class.equals(helper.getTranscodeClass())) {return false;}
}
while (modelLoaders == null || !hasNextModelLoader()) {
resourceClassIndex++;
if (resourceClassIndex >= resourceClasses.size()) {
sourceIdIndex++;
if (sourceIdIndex >= sourceIds.size()) {return false;}
resourceClassIndex = 0;
}
Key sourceId = sourceIds.get(sourceIdIndex);
Class<?> resourceClass = resourceClasses.get(resourceClassIndex);
Transformation<?> transformation = helper.getTransformation(resourceClass);
currentKey =
new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops
helper.getArrayPool(),
sourceId,
helper.getSignature(),
helper.getWidth(),
helper.getHeight(),
transformation,
resourceClass,
helper.getOptions());
cacheFile = helper.getDiskCache().get(currentKey);
if (cacheFile != null) {
sourceKey = sourceId;
modelLoaders = helper.getModelLoaders(cacheFile);
modelLoaderIndex = 0;
}
}
loadData = null;
boolean started = false;
while (!started && hasNextModelLoader()) {ModelLoader<File, ?> modelLoader = modelLoaders.get(modelLoaderIndex++);
loadData = modelLoader.buildLoadData(cacheFile,
helper.getWidth(), helper.getHeight(), helper.getOptions());
if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
started = true;
loadData.fetcher.loadData(helper.getPriority(), this);
}
}
return started;
}
如果在 Resource 中找不到需要的资源,那么 startNext 就会返回 false,在 runGenerators 中就会进入循环体内:
- 接着会重复上面执行 getNextStage, 由于现在 Stage 已经是 RESOURCE_CACHE, 所以接下来会返回 DataCacheGenerator, 执行逻辑和上面的 ResourceCacheGenerator 是一样的,如果还是没有找到需要的,进入循环体内。
- 此时 getNextStage 会根据用于是否设置只从磁盘中获取资源,如果是就会通知失败,回调 onLoadFailed;如果不是就设置当前 Stage 为 Stage.SOURCE, 接着往下走。
- 状态就会进入循环内部的 if 条件逻辑里面,调用 reschedule。
- 在 reschedule 把 runReason 设置成 SWITCH_TO_SOURCE_SERVICE, 然后通过 callback 回调。
- DecodeJob 中的 callback 是 EngineJob 传递过来的,所以现在返回到 EngineJob。
- 在 EngineJob 中通过 getActiveSourceExecutor 切换到网络线程池中,执行 DecodeJob,下面就准备开始发起网络请求。
四、网络缓存
在 Stage.SOURCE 阶段,通过 getNextGenerator 返回的是 SourceGenerator, 所以目前的 currentGenerator 就是它。
流程还是一样的,SourceGenerator 还是调用 startNext 方法,获取到对应的 DataFetcher,这里其实是 HttpUrlFetcher,发起网络请求。
// DecodeJob.java
private void runGenerators() {
...
while (!isCancelled && currentGenerator != null
&& !(isStarted = currentGenerator.startNext())) {stage = getNextStage(stage);
currentGenerator = getNextGenerator();
if (stage == Stage.SOURCE) {reschedule();
return;
}
}
...
}
@Override
public void reschedule() {
runReason = RunReason.SWITCH_TO_SOURCE_SERVICE;
callback.reschedule(this);
}
// EngineJob.java
@Override
public void reschedule(DecodeJob<?> job) {getActiveSourceExecutor().execute(job);
}
先缓一缓,本文其实到了上面已经可以结束了,Glide 涉及到的五级缓存都已经涉及到了,是真的就可以结束了吗?不是的,网络请求回来和缓存还有关系吗?接着看到 HttpUrlFetcher, 下载成功后回调 onDataReady, 其中 callback 是 SourceGenerator:
// HttpUrlFetcher.java
@Override
public void loadData(@NonNull Priority priority,
@NonNull DataCallback<? super InputStream> callback) {long startTime = LogTime.getLogTime();
try {InputStream result = loadDataWithRedirects(glideUrl.toURL(), 0, null, glideUrl.getHeaders());
callback.onDataReady(result);
} catch (IOException e) {if (Log.isLoggable(TAG, Log.DEBUG)) {Log.d(TAG, "Failed to load data for url", e);
}
callback.onLoadFailed(e);
} finally {if (Log.isLoggable(TAG, Log.VERBOSE)) {Log.v(TAG, "Finished http url fetcher fetch in" + LogTime.getElapsedMillis(startTime));
}
}
}
// EngineJob.java
@Override
public void reschedule(DecodeJob<?> job) {getActiveSourceExecutor().execute(job);
}
正常情况会进入 if 判断逻辑里面,赋值 dataToCache,然后回调 cb.reschedule,而 cb 就是 DecodeJob 构造 SourceGenerator 的时候传入,cb 是 DecodeJob。
// SourceGenerator.java
@Override
public void onDataReady(Object data) {DiskCacheStrategy diskCacheStrategy = helper.getDiskCacheStrategy();
if (data != null && diskCacheStrategy.isDataCacheable(loadData.fetcher.getDataSource())) {
dataToCache = data;
cb.reschedule();} else {
cb.onDataFetcherReady(loadData.sourceKey, data, loadData.fetcher,
loadData.fetcher.getDataSource(), originalKey);
}
}
DecodeJob 在 reschedule 回调 EngineJob, 最后还是回到 SourceGenerator 中的 startNext() 逻辑。
// DecodeJob.java
private DataFetcherGenerator getNextGenerator() {switch (stage) {
case RESOURCE_CACHE:
return new ResourceCacheGenerator(decodeHelper, this);
case DATA_CACHE:
return new DataCacheGenerator(decodeHelper, this);
case SOURCE:
return new SourceGenerator(decodeHelper, this);
case FINISHED:
return null;
default:
throw new IllegalStateException("Unrecognized stage:" + stage);
}
}
@Override
public void reschedule() {
runReason = RunReason.SWITCH_TO_SOURCE_SERVICE;
callback.reschedule(this);
}
和第一次进来的逻辑不一样,现在 dataToCache != null,进入第一个 if 逻辑。
在逻辑里面调用 cacheData, 逻辑很明显,保持数据到本地,然后会构造一个 DataCacheGenerator。
而 DataCacheGenerator 前面已经分析过了,就是用来加载本地原始数据的,这回会加载成功,返回 true。
// SourceGenerator.java
@Override
public boolean startNext() {if (dataToCache != null) {
Object data = dataToCache;
dataToCache = null;
cacheData(data);
}
if (sourceCacheGenerator != null && sourceCacheGenerator.startNext()) {return true;}
...
}
private void cacheData(Object dataToCache) {long startTime = LogTime.getLogTime();
try {Encoder<Object> encoder = helper.getSourceEncoder(dataToCache);
DataCacheWriter<Object> writer =
new DataCacheWriter<>(encoder, dataToCache, helper.getOptions());
originalKey = new DataCacheKey(loadData.sourceKey, helper.getSignature());
helper.getDiskCache().put(originalKey, writer);
} finally {loadData.fetcher.cleanup();
}
sourceCacheGenerator =
new DataCacheGenerator(Collections.singletonList(loadData.sourceKey), helper, this);
}
接下来就是一系列的回调了:
DataCacheGenerator 的 startNext 逻辑里面会给 DataFetcher 传递自身作为 callback,在加载本地数据成功后回调 onDataReady。
// DataCacheGenerator
@Override
public boolean startNext() {
...
loadData = null;
boolean started = false;
while (!started && hasNextModelLoader()) {
...
if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
started = true;
loadData.fetcher.loadData(helper.getPriority(), this);
}
}
return started;
}
@Override
public void onDataReady(Object data) {cb.onDataFetcherReady(sourceKey, data, loadData.fetcher, DataSource.DATA_DISK_CACHE, sourceKey);
}
而 cb 现在是 SourceGenerator 传递过来,SourceGenerator 再回调它自己的 cb,是 DecodeJob 在构造它的时候传过来。
// SourceGenerator.java
@Override
public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher,
DataSource dataSource, Key attemptedKey) {cb.onDataFetcherReady(sourceKey, data, fetcher, loadData.fetcher.getDataSource(), sourceKey);
}
// DecodeJob.java
@Override
public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher,
DataSource dataSource, Key attemptedKey) {
this.currentSourceKey = sourceKey;
this.currentData = data;
this.currentFetcher = fetcher;
this.currentDataSource = dataSource;
this.currentAttemptingKey = attemptedKey;
if (Thread.currentThread() != currentThread) {
runReason = RunReason.DECODE_DATA;
callback.reschedule(this);
} else {
try {decodeFromRetrievedData();
} finally {GlideTrace.endSection();
}
}
}
在上面 SourceGenerator 把 DecodeJob 切换到 ActiveSourceExecutor 线程中执行,还记得一开始 DecodeJob 是在哪启动的吗?在 EngineJob 中启动,然后是把 DecodeJob 放到 diskCacheExecutor 中执行。
// EngineJob.java
public void start(DecodeJob<R> decodeJob) {
this.decodeJob = decodeJob;
GlideExecutor executor = decodeJob.willDecodeFromCache()
? diskCacheExecutor
: getActiveSourceExecutor();
executor.execute(decodeJob);
}
所以上面在 DecodeJob 的 onDataFetcherReady 会走到第一个 if 逻辑里面,然后赋值 runReason = RunReason.DECODE_DATA, 再一次回调 Engine.reschedule, 将工作线程切换到 ActiveSourceExecutor。
// Engine.java
@Override
public void reschedule(DecodeJob<?> job) {
// Even if the job is cancelled here, it still needs to be scheduled so that it can clean itself
// up.
getActiveSourceExecutor().execute(job);
}
//
然后还是走到 DecodeJob, 现在会进入 DECODE_DATA 分支,在这里面会调用 ResourceDecoder 把数据解码:
private void runWrapped() {switch (runReason) {
case INITIALIZE:
stage = getNextStage(Stage.INITIALIZE);
currentGenerator = getNextGenerator();
runGenerators();
break;
case SWITCH_TO_SOURCE_SERVICE:
runGenerators();
break;
case DECODE_DATA:
decodeFromRetrievedData();
break;
default:
throw new IllegalStateException("Unrecognized run reason:" + runReason);
}
}
解码成功后调用 notifyComplete(result, dataSource);
private void notifyComplete(Resource<R> resource, DataSource dataSource) {setNotifiedOrThrow();
callback.onResourceReady(resource, dataSource);
}
五、总结
现在回答一下开头的几个问题。
1、有几级缓存?五级,分别是什么?
- 活动资源 (Active Resources)
- 内存缓存 (Memory Cache)
- 资源类型(Resource Disk Cache)
- 原始数据 (Data Disk Cache)
- 网络缓存
2、Glide 内存缓存之间是什么关系?
专门画了一幅图表明这个关系,言简意赅。
3、Glide 本地文件 IO 和网络请求是一个线程吗?
明显不是,本地 IO 通过 diskCacheExecutor, 而网络 IO 通过 ActiveSourceExecutor
4、Glide 网络请求回来后数据直接返回给用户还是先存再返回?
不是直接返回给用户,会在 SourceGenerator 中构造一个 DataCacheGenerator 来取数据。
更多内容敬请关注 vivo 互联网技术 微信公众号
注:转载文章请先与微信号:labs2020 联系。