公告
- 欢迎大家在我们平台上投放广告。如果你希望在我们的专栏、文档或邮件中投放广告,请准备好各种尺寸的图片和专属链接,联系咸鱼(QQ 1034616238)。
- 我们组织了一个开源互助平台,方便开源组织和大 V 互相认识,互相帮助,整合资源。请回复这个帖子并注明组织 / 个人信息来申请加入。
- 请回复这个帖子来推荐希望翻译的内容。如果大家遇到了做得不错的教程或翻译项目,也可以推荐给我们。我们会联系项目的维护者,一起把它变得更好。
- 我们的各个公众平台接受个人学习博文,论文解读,比赛心得等 AI 相关文章投稿,请将文章链接发到这里,我们会每日从所有投稿博文中精选两篇,在 ApacheCN 全平台推送。
- 为了能够将开源事业做大做强,ApacheCN 需要与公益基金会(IT、教育类)合作,欢迎大家提供帮助。同时我们也接受社会各界的捐助。
- 如果你不希望再收到我们的邮件,请直接拉黑我们,不要浪费彼此的时间,谢谢合作。
- ByteInAI 是我们和 Datawhale、AI 有道、黄海广博士等组织或个人联合推出的 AI 垂直自媒体,是一个纯商业项目。如果你有意向投资这个项目,请联系 Datawhale(微信二维码)或咸鱼(QQ 1034616238)。
组织任务
认领须知:
- 请私聊片刻(529815144)、咸鱼(1034616238)、或飞龙(562826179)来认领任务,我们会把你拉进合伙人群。
- 除了列出的翻译项目之外,现有 翻译项目不接受新的负责人。如果你打算贡献,请直接提交 Pull Request。
- 如果你的想法没有列出(包括但不仅限于翻译项目),同样欢迎私聊我们。
翻译校对活动
百页机器学习小书
参与方式:https://github.com/apachecn/m…
整体进度:https://github.com/apachecn/m…
项目仓库:https://github.com/apachecn/m…
认领:7/12,翻译:1/12
章节 | 贡献者 | 进度 |
---|---|---|
零、前言 | @PEGASUS1993 | 100% |
一、介绍 | @PEGASUS1993 | |
二、符号和定义 | @PEGASUS1993 | |
三、基本算法 | @Rachel-Hu | |
四、线性算法剖析 | @P3n9W31 | |
五、基本实践 | @chengchengbai | |
六、神经网络和深度学习 | @Everfighting | |
七、问题和答案 | ||
八、高级实践 | ||
九、无监督学习 | ||
十、其它学习形式 | ||
十一、总结 |
短篇集(校对)
参与方式:https://github.com/apachecn/m…
整体进度:https://github.com/apachecn/m…
项目仓库:https://github.com/apachecn/m…
关于卷积神经网络:认领:2/12,校对:2/12
章节 | 贡献者 | 进度 |
---|---|---|
关于卷积神经网络 | – | – |
1 | @daewis | 100% |
2.1.1-2.1.3 | @daewis | 100% |
2.1.4-2.1.6 | ||
2.2.1 | ||
2.2.2-2.2.3 | ||
2.3-2.4 | ||
3.1 | ||
3.2 | ||
3.3 | ||
3.4-3.5 | ||
4.1 | ||
4.2 |
写给不耐烦程序员的 JavaScript(校对)
参与方式:https://github.com/apachecn/i…
整体进度:https://github.com/apachecn/i…
项目仓库:https://github.com/apachecn/i…
认领:30/42,校对:28/42
章节 | 贡献者 | 进度 |
---|---|---|
1. 关于本书(ES2019 版) | @YouWillBe | 100% |
2. 常见问题:本书 | @huangzijian888 | 100% |
3. JavaScript 的历史和演变 | ||
4. 常见问题:JavaScript | ||
5. 概览 | @kj415j45 | 100% |
6. 语法 | @lq920320 | 100% |
7. 在控制台上打印信息(console.* ) |
@lq920320 | 100% |
8. 断言 API | @lq920320 | 100% |
9. 测验和练习入门 | @so-hard | 100% |
10. 变量和赋值 | @so-hard | 100% |
11. 值 | @lq920320 | 100% |
12. 运算符 | @wizardforcel | 100% |
13. 非值 undefined 和null |
@wizardforcel | 100% |
14. 布尔值 | @wizardforcel | 100% |
15. 数字 | @wizardforcel | 100% |
16. Math |
@wizardforcel | 100% |
17. Unicode – 简要介绍(高级) | @wizardforcel | 100% |
18. 字符串 | @wizardforcel | 100% |
19. 使用模板字面值和标记模板 | @wizardforcel | 100% |
20. 符号 | @wizardforcel | 100% |
21. 控制流语句 | @wizardforcel | 100% |
22. 异常处理 | ||
23. 可调用值 | ||
24. 模块 | ||
25. 单个对象 | ||
26. 原型链和类 | @lq920320 | 100% |
27. 同步迭代 | @lq920320 | |
28. 数组(Array ) |
@52admln | 100% |
29. 类型化数组:处理二进制数据(高级) | ||
30. 映射(Map ) |
@so-hard | |
31. WeakMaps(WeakMap ) |
||
32. 集(Set ) |
||
33. WeakSets(WeakSet ) |
||
34. 解构 | @Kavelaa | 100% |
35. 同步生成器(高级) | ||
36. JavaScript 中的异步编程 | @Kavelaa | 100% |
37. 异步编程的 Promise | @iChrisJ | 100% |
38. 异步函数 | @iChrisJ | 100% |
39. 正则表达式(RegExp ) |
@iChrisJ | 100% |
40. 日期(Date ) |
@facebesidewyj | 100% |
41. 创建和解析 JSON(JSON ) |
@xdyushenli | |
42. 其余章节在哪里? |
seaborn 0.9 中文文档
参与方式:https://github.com/apachecn/s…
整体进度:https://github.com/apachecn/s…
项目仓库:https://github.com/apachecn/s…
认领:64/74,翻译:47/74
序号 | 章节 | 译者 | 进度 | |
---|---|---|---|---|
1 | An introduction to seaborn | @yiran7324 | 100% | |
2 | Installing and getting started | @neolei | 100% | |
3 | Visualizing statistical relationships | @JNJYan | 100% | |
4 | Plotting with categorical data | @hold2010 | 100% | |
5 | Visualizing the distribution of a dataset | @alohahahaha | 100% | |
6 | Visualizing linear relationships | @friedhelm739 | ||
7 | Building structured multi-plot grids | @keyianpai | 100% | |
8 | Controlling figure aesthetics | @P3n9W31 | 100% | |
9 | Choosing color palettes | @Modrisco | 100% | |
10 | seaborn.relplot | @Stuming | ||
11 | seaborn.scatterplot | @tututwo | ||
12 | seaborn.lineplot | @tututwo | ||
13 | seaborn.catplot | @LIJIANcoder97 | 100% | |
14 | seaborn.stripplot | @LIJIANcoder97 | 100% | |
15 | seaborn.swarmplot | @LIJIANcoder97 | ||
16 | seaborn.boxplot | @FindNorthStar | 100% | |
17 | seaborn.violinplot | @FindNorthStar | 100% | |
18 | seaborn.boxenplot | @FindNorthStar | 100% | |
19 | seaborn.pointplot | @FindNorthStar | 100% | |
20 | seaborn.barplot | @melon-bun | ||
21 | seaborn.countplot | @Stuming | 100% | |
22 | seaborn.jointplot | @Stuming | ||
23 | seaborn.pairplot | @Stuming | ||
24 | seaborn.distplot | @hyuuo | 100% | |
25 | seaborn.kdeplot | @hyuuo | 100% | |
26 | seaborn.rugplot | @P3n9W31 | 100% | |
27 | seaborn.lmplot | @P3n9W31 | 100% | |
28 | seaborn.regplot | @P3n9W31 | 100% | |
29 | seaborn.residplot | @P3n9W31 | 100% | |
30 | seaborn.heatmap | @hyuuo | 100% | |
31 | seaborn.clustermap | |||
32 | seaborn.FacetGrid | @hyuuo | 100% | |
33 | seaborn.FacetGrid.map | @sfw134 | 100% | |
34 | seaborn.FacetGrid.map_dataframe | @sfw134 | 100% | |
35 | seaborn.PairGrid | @sfw134 | ||
36 | seaborn.PairGrid.map | @sfw134 | ||
37 | seaborn.PairGrid.map_diag | @sfw134 | ||
38 | seaborn.PairGrid.map_offdiag | @sfw134 | ||
39 | seaborn.PairGrid.map_lower | @sfw134 | ||
40 | seaborn.PairGrid.map_upper | @sfw134 | ||
41 | seaborn.JointGrid | |||
42 | seaborn.JointGrid.plot | |||
43 | seaborn.JointGrid.plot_joint | |||
44 | seaborn.JointGrid.plot_marginals | |||
45 | seaborn.set | @lbllol365 | ||
46 | seaborn.axes_style | @lbllol365 | ||
47 | seaborn.set_style | @lbllol365 | ||
48 | seaborn.plotting_context | |||
49 | seaborn.set_context | |||
50 | seaborn.set_color_codes | |||
51 | seaborn.reset_defaults | |||
52 | seaborn.reset_orig | |||
53 | seaborn.set_palette | @Modrisco | 100% | |
54 | seaborn.color_palette | @Modrisco | 100% | |
55 | seaborn.husl_palette | @Modrisco | 100% | |
56 | seaborn.hls_palette | @Modrisco | 100% | |
57 | seaborn.cubehelix_palette | @Modrisco | 100% | |
58 | seaborn.dark_palette | @Modrisco | 100% | |
59 | seaborn.light_palette | @Modrisco | 100% | |
60 | seaborn.diverging_palette | @Modrisco | 100% | |
61 | seaborn.blend_palette | @Modrisco | 100% | |
62 | seaborn.xkcd_palette | @Modrisco | 100% | |
63 | seaborn.crayon_palette | @Modrisco | 100% | |
64 | seaborn.mpl_palette | @Modrisco | 100% | |
65 | seaborn.choose_colorbrewer_palette | @Modrisco | 100% | |
66 | seaborn.choose_cubehelix_palette | @Modrisco | 100% | |
67 | seaborn.choose_light_palette | @Modrisco | 100% | |
68 | seaborn.choose_dark_palette | @Modrisco | 100% | |
69 | seaborn.choose_diverging_palette | @Modrisco | 100% | |
70 | seaborn.load_dataset | @Modrisco | 100% | |
71 | seaborn.despine | @Modrisco | 100% | |
72 | seaborn.desaturate | @Modrisco | 100% | |
73 | seaborn.saturate | @Modrisco | 100% | |
74 | seaborn.set_hls_values | @Modrisco | 100% |
Git 中文参考(校对)
参与方式:https://github.com/apachecn/g…
整体进度:https://github.com/apachecn/g…
项目仓库:https://github.com/apachecn/g…
认领:14/83,校对:12/83
序号 | 章节 | 贡献者 | 进度 |
---|---|---|---|
1 | git | ||
2 | git-config | @honglyua | 100% |
3 | git-help | @honglyua | 100% |
4 | git-init | @honglyua | 100% |
5 | git-clone | @honglyua | 100% |
6 | git-add | @yulezheng | 100% |
7 | git-status | @honglyua | 100% |
8 | git-diff | @honglyua | 100% |
9 | git-commit | @yulezheng | |
10 | git-reset | @honglyua | 100% |
11 | git-rm | @honglyua | 100% |
12 | git-mv | @honglyua | 100% |
13 | git-branch | @honglyua | 100% |
14 | git-checkout | ||
15 | git-merge | ||
16 | git-mergetool | ||
17 | git-log | ||
18 | git-stash | ||
19 | git-tag | ||
20 | git-worktree | ||
21 | git-fetch | ||
22 | git-pull | @Mrhuangyi | 100% |
23 | git-push | @Mrhuangyi | |
24 | git-remote | ||
25 | git-submodule | ||
26 | git-show | ||
27 | git-log | ||
29 | git-shortlog | ||
30 | git-describe | ||
31 | git-apply | ||
32 | git-cherry-pick | ||
34 | git-rebase | ||
35 | git-revert | ||
36 | git-bisect | ||
37 | git-blame | ||
38 | git-grep | ||
39 | gitattributes | ||
40 | giteveryday | ||
41 | gitglossary | ||
42 | githooks | ||
43 | gitignore | ||
44 | gitmodules | ||
45 | gitrevisions | ||
46 | gittutorial | ||
47 | gitworkflows | ||
48 | git-am | ||
50 | git-format-patch | ||
51 | git-send-email | ||
52 | git-request-pull | ||
53 | git-svn | ||
54 | git-fast-import | ||
55 | git-clean | ||
56 | git-gc | ||
57 | git-fsck | ||
58 | git-reflog | ||
59 | git-filter-branch | ||
60 | git-instaweb | ||
61 | git-archive | ||
62 | git-bundle | ||
63 | git-daemon | ||
64 | git-update-server-info | ||
65 | git-cat-file | ||
66 | git-check-ignore | ||
67 | git-checkout-index | ||
68 | git-commit-tree | ||
69 | git-count-objects | ||
70 | git-diff-index | ||
71 | git-for-each-ref | ||
72 | git-hash-object | ||
73 | git-ls-files | ||
74 | git-merge-base | ||
75 | git-read-tree | ||
76 | git-rev-list | ||
77 | git-rev-parse | ||
78 | git-show-ref | ||
79 | git-symbolic-ref | ||
80 | git-update-index | ||
81 | git-update-ref | ||
82 | git-verify-pack | ||
83 | git-write-tree |
HBase 3.0 中文参考指南(校对)
参与方式:https://github.com/apachecn/h…
整体进度:https://github.com/apachecn/h…
项目仓库:https://github.com/apachecn/h…
认领:18/31,校对:14/31
章节 | 贡献者 | 进度 |
---|---|---|
Preface | @xixici | 100% |
Getting Started | @xixici | 100% |
Apache HBase Configuration | @xixici | 100% |
Upgrading | @xixici | 100% |
The Apache HBase Shell | @xixici | 100% |
Data Model | @Winchester-Yi | |
HBase and Schema Design | @RaymondCode | 100% |
RegionServer Sizing Rules of Thumb | ||
HBase and MapReduce | @BridgetLai | 100% |
Securing Apache HBase | ||
Architecture | @RaymondCode | |
In-memory Compaction | @mychaow | 100% |
Backup and Restore | @mychaow | 100% |
Synchronous Replication | @mychaow | 100% |
Apache HBase APIs | @xixici | 100% |
Apache HBase External APIs | @xixici | 100% |
Thrift API and Filter Language | @xixici | 100% |
HBase and Spark | @TsingJyujing | 100% |
Apache HBase Coprocessors | @TsingJyujing | |
Apache HBase Performance Tuning | ||
Troubleshooting and Debugging Apache HBase | ||
Apache HBase Case Studies | ||
Apache HBase Operational Management | ||
Building and Developing Apache HBase | ||
Unit Testing HBase Applications | ||
Protobuf in HBase | @TsingJyujing | |
Procedure Framework (Pv2): HBASE-12439 | ||
AMv2 Description for Devs | ||
ZooKeeper | ||
Community | ||
Appendix |
UCB Prob140:面向数据科学的概率论
参与方式:https://github.com/apachecn/p…
整体进度:https://github.com/apachecn/p…
项目仓库:https://github.com/apachecn/p…
认领:22/25,翻译:19/25
标题 | 译者 | 翻译进度 |
---|---|---|
一、基础 | 飞龙 | 100% |
二、计算几率 | 飞龙 | 100% |
三、随机变量 | 飞龙 | 100% |
四、事件之间的关系 | @biubiubiuboomboomboom | 100% |
五、事件集合 | >0% | |
六、随机计数 | @viviwong | 100% |
七、泊松化 | @YAOYI626 | 100% |
八、期望 | 50% | |
九、条件(续) | @YAOYI626 | 100% |
十、马尔科夫链 | 喵十八 | 100% |
十一、马尔科夫链(续) | 喵十八 | 100% |
十二、标准差 | 缺只萨摩 | 100% |
十三、方差和协方差 | 缺只萨摩 | 100% |
十四、中心极限定理 | 喵十八 | 100% |
十五、连续分布 | @ThunderboltSmile | |
十六、变换 | @hellozhaihy | |
十七、联合密度 | @Winchester-Yi | 100% |
十八、正态和 Gamma 族 | @Winchester-Yi | 100% |
十九、和的分布 | 平淡的天 | 100% |
二十、估计方法 | 平淡的天 | 100% |
二十一、Beta 和二项 | @lvzhetx | 100% |
二十二、预测 | 50% | |
二十三、联合正态随机变量 | @JUNE951234 | |
二十四、简单线性回归 | @ThomasCai | 100% |
二十五、多元回归 | @lanhaixuan | 100% |
Machine Learning Mastery(校对)
参与方式:https://github.com/apachecn/m…
整体进度:https://github.com/apachecn/m…
项目仓库:https://github.com/apachecn/m…
Keras:认领:0/46,校对:0/46
XGBoost:认领:0/18,校对:0/18
章节 | 贡献者 | 进度 |
---|---|---|
深度学习与 Keras | – | – |
Keras 中神经网络模型的 5 步生命周期 | ||
在 Python 迷你课程中应用深度学习 | ||
Keras 深度学习库的二元分类教程 | ||
如何用 Keras 构建多层感知器神经网络模型 | ||
如何在 Keras 中检查深度学习模型 | ||
10 个用于 Amazon Web Services 深度学习的命令行秘籍 | ||
机器学习卷积神经网络的速成课程 | ||
如何在 Python 中使用 Keras 进行深度学习的度量 | ||
深度学习书籍 | ||
深度学习课程 | ||
你所知道的深度学习是一种谎言 | ||
如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步) | ||
神经网络中批量和迭代之间的区别是什么? | ||
在 Keras 展示深度学习模型训练历史 | ||
基于 Keras 的深度学习模型中的 dropout 正则化 | ||
评估 Keras 中深度学习模型的表现 | ||
如何评价深度学习模型的技巧 | ||
小批量梯度下降的简要介绍以及如何配置批量大小 | ||
在 Keras 中获得深度学习帮助的 9 种方法 | ||
如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数 | ||
用 Keras 在 Python 中使用卷积神经网络进行手写数字识别 | ||
如何用 Keras 进行预测 | ||
用 Keras 进行深度学习的图像增强 | ||
8 个深度学习的鼓舞人心的应用 | ||
Python 深度学习库 Keras 简介 | ||
Python 深度学习库 TensorFlow 简介 | ||
Python 深度学习库 Theano 简介 | ||
如何使用 Keras 函数式 API 进行深度学习 | ||
Keras 深度学习库的多类分类教程 | ||
多层感知器神经网络速成课程 | ||
基于卷积神经网络的 Keras 深度学习库中的目标识别 | ||
流行的深度学习库 | ||
用深度学习预测电影评论的情感 | ||
Python 中的 Keras 深度学习库的回归教程 | ||
如何使用 Keras 获得可重现的结果 | ||
如何在 Linux 服务器上运行深度学习实验 | ||
保存并加载您的 Keras 深度学习模型 | ||
用 Keras 逐步开发 Python 中的第一个神经网络 | ||
用 Keras 理解 Python 中的有状态 LSTM 循环神经网络 | ||
在 Python 中使用 Keras 深度学习模型和 Scikit-Learn | ||
如何使用预训练的 VGG 模型对照片中的物体进行分类 | ||
在 Python 和 Keras 中对深度学习模型使用学习率调度 | ||
如何在 Keras 中可视化深度学习神经网络模型 | ||
什么是深度学习? | ||
何时使用 MLP,CNN 和 RNN 神经网络 | ||
为什么用随机权重初始化神经网络? | ||
XGBoost | – | – |
通过在 Python 中使用 XGBoost 提前停止来避免过度拟合 | ||
如何在 Python 中调优 XGBoost 的多线程支持 | ||
如何配置梯度提升算法 | ||
在 Python 中使用 XGBoost 进行梯度提升的数据准备 | ||
如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型 | ||
如何在 Python 中使用 XGBoost 评估梯度提升模型 | ||
在 Python 中使用 XGBoost 的特征重要性和特征选择 | ||
浅谈机器学习的梯度提升算法 | ||
应用机器学习的 XGBoost 简介 | ||
如何在 macOS 上为 Python 安装 XGBoost | ||
如何在 Python 中使用 XGBoost 保存梯度提升模型 | ||
从梯度提升开始,比较 165 个数据集上的 13 种算法 | ||
在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升 | ||
如何使用 Amazon Web Services 在云中训练 XGBoost 模型 | ||
在 Python 中使用 XGBoost 调整梯度提升的学习率 | ||
如何在 Python 中使用 XGBoost 调整决策树的数量和大小 | ||
如何在 Python 中使用 XGBoost 可视化梯度提升决策树 | ||
在 Python 中开始使用 XGBoost 的 7 步迷你课程 |
Pytorch 1.0 中文文档
参与方式:https://github.com/apachecn/p…
整体进度:https://github.com/apachecn/p…
项目仓库:https://github.com/apachecn/p…
翻译活动:认领:75/76,翻译:70/76
校对活动:认领:18/76,校对:1/76
章节 | 译者 | 进度 | 校验者 | 进度 |
---|---|---|---|---|
教程部分 | – | – | – | – |
Deep Learning with PyTorch: A 60 Minute Blitz | @bat67 | 100% | @AllenZYJ | |
What is PyTorch? | @bat67 | 100% | @AllenZYJ | |
Autograd: Automatic Differentiation | @bat67 | 100% | @AllenZYJ | |
Neural Networks | @bat67 | 100% | @AllenZYJ | |
Training a Classifier | @bat67 | 100% | @AllenZYJ | |
Optional: Data Parallelism | @bat67 | 100% | ||
Data Loading and Processing Tutorial | @yportne13 | 100% | ||
Learning PyTorch with Examples | @bat67 | 100% | @Smilexuhc | |
Transfer Learning Tutorial | @jiangzhonglian | 100% | @infdahai | |
Deploying a Seq2Seq Model with the Hybrid Frontend | @cangyunye | 100% | ||
Saving and Loading Models | @bruce1408 | 100% | @luxinfeng | |
What is torch.nn really? | @lhc741 | 100% | @luxinfeng | |
Finetuning Torchvision Models | @ZHHAYO | 100% | @luxinfeng | |
Spatial Transformer Networks Tutorial | @PEGASUS1993 | 100% | @Smilexuhc | |
Neural Transfer Using PyTorch | @bdqfork | 100% | ||
Adversarial Example Generation | @cangyunye | 100% | @infdahai | |
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX | @PEGASUS1993 | 100% | ||
Chatbot Tutorial | @a625687551 | 100% | @enningxie | |
Generating Names with a Character-Level RNN | @hhxx2015 | 100% | @hijkzzz | 100% |
Classifying Names with a Character-Level RNN | @hhxx2015 | 100% | @hijkzzz | |
Deep Learning for NLP with Pytorch | @bruce1408 | 100% | ||
Introduction to PyTorch | @guobaoyo | 100% | ||
Deep Learning with PyTorch | @bdqfork | 100% | ||
Word Embeddings: Encoding Lexical Semantics | @sight007 | 100% | @Smilexuhc | |
Sequence Models and Long-Short Term Memory Networks | @ETCartman | 100% | ||
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF | @enningxie | |||
Translation with a Sequence to Sequence Network and Attention | @mengfu188 | 100% | ||
DCGAN Tutorial | @wangshuai9517 | 100% | @infdahai | |
Reinforcement Learning (DQN) Tutorial | @friedhelm739 | 100% | @infdahai | |
Creating Extensions Using numpy and scipy | @cangyunye | 100% | ||
Custom C++ and CUDA Extensions | @P3n9W31 | 100% | ||
Extending TorchScript with Custom C++ Operators | @sunxia233 | |||
Writing Distributed Applications with PyTorch | @firdameng | 100% | ||
PyTorch 1.0 Distributed Trainer with Amazon AWS | @yportne13 | 100% | ||
ONNX Live Tutorial | @PEGASUS1993 | 100% | ||
Loading a PyTorch Model in C++ | @talengu | 100% | ||
Using the PyTorch C++ Frontend | @solerji | 100% | ||
文档部分 | – | – | – | – |
Autograd mechanics | @PEGASUS1993 | 100% | ||
Broadcasting semantics | @PEGASUS1993 | 100% | ||
CUDA semantics | @jiangzhonglian | 100% | ||
Extending PyTorch | @PEGASUS1993 | 100% | ||
Frequently Asked Questions | @PEGASUS1993 | 100% | ||
Multiprocessing best practices | @cvley | 100% | ||
Reproducibility | @bruce1408 | |||
Serialization semantics | @yuange250 | 100% | ||
Windows FAQ | @PEGASUS1993 | 100% | ||
torch | @infdahai | |||
torch.Tensor | @hijkzzz | 100% | ||
Tensor Attributes | @yuange250 | 100% | ||
Type Info | @PEGASUS1993 | 100% | ||
torch.sparse | @hijkzzz | 100% | ||
torch.cuda | @bdqfork | 100% | ||
torch.Storage | @yuange250 | 100% | ||
torch.nn | @gongel | 100% | ||
torch.nn.functional | @hijkzzz | 100% | ||
torch.nn.init | @GeneZC | 100% | ||
torch.optim | @zonasw | |||
Automatic differentiation package – torch.autograd | @gfjiangly | 100% | ||
Distributed communication package – torch.distributed | @univeryinli | 100% | ||
Probability distributions – torch.distributions | @hijkzzz | 100% | ||
Torch Script | @keyianpai | 100% | ||
Multiprocessing package – torch.multiprocessing | @hijkzzz | 100% | ||
torch.utils.bottleneck | @belonHan | 100% | ||
torch.utils.checkpoint | @belonHan | 100% | ||
torch.utils.cpp_extension | @belonHan | 100% | ||
torch.utils.data | @BXuan694 | 100% | ||
torch.utils.dlpack | @kunwuz | 100% | ||
torch.hub | @kunwuz | 100% | ||
torch.utils.model_zoo | @BXuan694 | 100% | ||
torch.onnx | @guobaoyo | 100% | ||
Distributed communication package (deprecated) – torch.distributed.deprecated | @luxinfeng | 100% | ||
torchvision Reference | @BXuan694 | 100% | ||
torchvision.datasets | @BXuan694 | 100% | ||
torchvision.models | @BXuan694 | 100% | ||
torchvision.transforms | @BXuan694 | 100% | ||
torchvision.utils | @BXuan694 | 100% |
TensorFlow 2.0 中文文档
整体进度:https://github.com/apachecn/t…
项目仓库:https://github.com/apachecn/t…
认领:2/70,翻译:2/70
章节 | 译者 | 进度 | 校验者 | 进度 |
---|---|---|---|---|
快速入门 | – | – | – | – |
开始使用 TensorFlow 2.0 | @jiangzhonglian | 100% | – | – |
[Effective TensorFlow 2]() | – | – | – | – |
[Migrate from TF 1 to TF 2]() | – | – | – | – |
[Convert with the upgrade script]() | – | – | – | – |
[Get started for beginners]() | – | – | – | – |
[Get started for experts]() | – | – | – | – |
初学者教程 | – | – | – | – |
ML basics | – | – | – | – |
[Overview]() | – | – | – | – |
[Classify images]() | – | – | – | – |
[Classify text]() | – | – | – | – |
[Classify structured data]() | – | – | – | – |
[Regression]() | – | – | – | – |
[Overfitting and underfitting]() | – | – | – | – |
[Save and restore models]() | – | – | – | – |
Images | – | – | – | – |
[Convolutional neural networks]() | – | – | – | – |
[Transfer learning with TFHub]() | – | – | – | – |
[Transfer learning with pretrained CNNs]() | – | – | – | – |
文本和序列 | – | – | – | – |
Word Embeddings 简介 | @jiangzhonglian | 100% | – | – |
[Classify preprocessed text]() | – | – | – | – |
[Classify text with a RNN]() | – | – | – | – |
Estimators | – | – | – | – |
[Premade estimators]() | – | – | – | – |
[Linear models]() | – | – | – | – |
ADVANCED TUTORIALS | – | – | – | – |
Customization | – | – | – | – |
[Overview]() | – | – | – | – |
[Tensors and operations]() | – | – | – | – |
[Custom layers]() | – | – | – | – |
[Automatic differentiation]() | – | – | – | – |
[Custom training: basics]() | – | – | – | – |
[Custom training: walkthrough]() | – | – | – | – |
[TF function and AutoGraph]() | – | – | – | – |
Text and sequences | – | – | – | – |
[Generate text with an RNN]() | – | – | – | – |
[Translation with attention]() | – | – | – | – |
[Image captioning]() | – | – | – | – |
[Transformer model for language understanding]() | – | – | – | – |
lmage generation | – | – | – | – |
[Style transfer]() | – | – | – | – |
[DCGAN]() | – | – | – | – |
[Pix2Pix]() | – | – | – | – |
[CycleGAN]() | – | – | – | – |
[Variational autoencoder]() | – | – | – | – |
[Adversarial FGSM]() | – | – | – | – |
Load and preprocess data | – | – | – | – |
[CSV]() | – | – | – | – |
[Numpy]() | – | – | – | – |
[Pandas]() | – | – | – | – |
[lmages]() | – | – | – | – |
[Text]() | – | – | – | – |
[TFRecords]() | – | – | – | – |
[Unicode]() | – | – | – | – |
[TF.Text]() | – | – | – | – |
Distributed training | – | – | – | – |
[Distributed training]() | – | – | – | – |
[Distributed training with custom]() | – | – | – | – |
[training loops]() | – | – | – | – |
[Multi worker training with]() | – | – | – | – |
[Estimator]() | – | – | – | – |
[Multi worker training with Keras]() | – | – | – | – |
GUIDE | – | – | – | – |
[Eager essentials]() | – | – | – | – |
[Variables]() | – | – | – | – |
[AutoGraph]() | – | – | – | – |
Keras | – | – | – | – |
[Keras overview]() | – | – | – | – |
[Keras functional API]() | – | – | – | – |
[Train and evaluate]() | – | – | – | – |
[Write layers and models from scratch]() | – | – | – | – |
[Save and serialize models]() | – | – | – | – |
[Write custom callbacks]() | – | – | – | – |
Accelerators | – | – | – | – |
[Distribution strategy]() | – | – | – | – |
[Using GPU]() | – | – | – | – |
Data input pipelines | – | – | – | – |
[tf.data Overview]() | – | – | – | – |
[Performance]() | – | – | – | – |
Serialization | – | – | – | – |
[Checkpoints]() | – | – | – | – |
[Saved models]() | – | – | – | – |
Misc | – | – | – | – |
[Version compatibility]() | – | – | – | – |
认领完毕
OpenCV 4.0 中文教程
参与方式:https://github.com/apachecn/o…
整体进度:https://github.com/apachecn/o…
项目仓库:https://github.com/apachecn/o…
认领:51/51,翻译:26/51。
UCB CS61b:Java 中的数据结构
参与方式:https://github.com/apachecn/c…
整体进度:https://github.com/apachecn/c…
项目仓库:https://github.com/apachecn/c…
认领:12/12,翻译:10/12
笔记整理活动
CS224n 自然语言处理
参与方式:https://github.com/apachecn/s…
整体进度:https://github.com/apachecn/s…
项目仓库:https://github.com/apachecn/s…
认领:12/20,整理:0/20
章节 | 贡献者 | 进度 |
---|---|---|
Lecture 1 | @cx123cx456 | |
Lecture 2 | @AllenZYJ | |
Lecture 3 | @cx123cx456 | |
Lecture 4 | @ZSIRS | |
Lecture 5 | @ZSIRS | |
Lecture 6 | @ZSIRS | |
Lecture 7 | @neolei | |
Lecture 8 | @Qichao-Ge | |
Lecture 9 | @NewDreamstyle192 | |
Lecture 10 | @enningxie | |
Lecture 11 | ||
Lecture 12 | ||
Lecture 13 | ||
Lecture 14 | ||
Lecture 15 | ||
Lecture 16 | ||
Lecture 17 | @pingjing233 | |
Lecture 18 | ||
Lecture 19 | ||
Lecture 20 | @Willianan |
宣传活动
PyTorch 1.0
整体进度:https://github.com/apachecn/p…
项目仓库:https://github.com/apachecn/p…
章节 | OSChina | SegmentFault | 掘金 | 简书 | 搜狐号 | 百家号 | 知乎专栏 |
---|---|---|---|---|---|---|---|
教程部分 | |||||||
Deep Learning with PyTorch: A 60 Minute Blitz | |||||||
What is PyTorch? | |||||||
Autograd: Automatic Differentiation | |||||||
Neural Networks | |||||||
Training a Classifier | |||||||
Optional: Data Parallelism | |||||||
Data Loading and Processing Tutorial | |||||||
Learning PyTorch with Examples | |||||||
Transfer Learning Tutorial | |||||||
Deploying a Seq2Seq Model with the Hybrid Frontend | |||||||
Saving and Loading Models | |||||||
What is torch.nn really? | |||||||
Finetuning Torchvision Models | |||||||
Spatial Transformer Networks Tutorial | |||||||
Neural Transfer Using PyTorch | |||||||
Adversarial Example Generation | |||||||
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX | |||||||
Chatbot Tutorial | |||||||
Generating Names with a Character-Level RNN | |||||||
Classifying Names with a Character-Level RNN | |||||||
Deep Learning for NLP with Pytorch | |||||||
Introduction to PyTorch | |||||||
Deep Learning with PyTorch | |||||||
Word Embeddings: Encoding Lexical Semantics | |||||||
Sequence Models and Long-Short Term Memory Networks | |||||||
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF | |||||||
Translation with a Sequence to Sequence Network and Attention | |||||||
DCGAN Tutorial | |||||||
Reinforcement Learning (DQN) Tutorial | |||||||
Creating Extensions Using numpy and scipy | |||||||
Custom C++ and CUDA Extensions | |||||||
Extending TorchScript with Custom C++ Operators | |||||||
Writing Distributed Applications with PyTorch | |||||||
PyTorch 1.0 Distributed Trainer with Amazon AWS | |||||||
ONNX Live Tutorial | |||||||
Loading a PyTorch Model in C++ | |||||||
Using the PyTorch C++ Frontend | |||||||
文档部分 | |||||||
Autograd mechanics | |||||||
Broadcasting semantics | |||||||
CUDA semantics | |||||||
Extending PyTorch | |||||||
Frequently Asked Questions | |||||||
Multiprocessing best practices | |||||||
Reproducibility | |||||||
Serialization semantics | |||||||
Windows FAQ | |||||||
torch | |||||||
torch.Tensor | |||||||
Tensor Attributes | |||||||
Type Info | |||||||
torch.sparse | |||||||
torch.cuda | |||||||
torch.Storage | |||||||
torch.nn | |||||||
torch.nn.functional | |||||||
torch.nn.init | |||||||
torch.optim | |||||||
Automatic differentiation package – torch.autograd | |||||||
Distributed communication package – torch.distributed | |||||||
Probability distributions – torch.distributions | |||||||
Torch Script | |||||||
Multiprocessing package – torch.multiprocessing | |||||||
torch.utils.bottleneck | |||||||
torch.utils.checkpoint | |||||||
torch.utils.cpp_extension | |||||||
torch.utils.data | |||||||
torch.utils.dlpack | |||||||
torch.hub | |||||||
torch.utils.model_zoo | |||||||
torch.onnx | |||||||
Distributed communication package (deprecated) – torch.distributed.deprecated | |||||||
torchvision Reference | |||||||
torchvision.datasets | |||||||
torchvision.models | |||||||
torchvision.transforms | |||||||
torchvision.utils |
关于我们
我们是一个大型开源社区,旗下 QQ 群共一万余人,订阅用户至少一万人。Github Star 数量超过 40k 个,在所有 Github 组织中排名前 150。网站日 uip 超过 4k,Alexa 排名的峰值为 20k。我们的核心成员拥有 CSDN 博客专家和简书程序员优秀作者认证。我们与 Datawhale、AI 有道、黄海广博士等国内知名开源组织和大 V 合作,组织公益性的翻译活动、学习活动和比赛组队活动。
与商业组织不同,我们并不会追逐热点,或者唯利是图。作为公益组织,我们将完成项目放在首要位置,并有足够时间把项目打磨到极致。我们希望做出广大 AI 爱好者真正需要的东西,打造真正有价值的长尾作品。
- 【导航】ibooker.org.cn
- 【归档】home.apachecn.org
- 【社区】ibooker.org.cn/forums
- 【Github】@ApacheCN
-
自媒体平台
- 微博:@ApacheCN
- 知乎专栏:AILearning
- 公众号:ApacheCN
- CSDN | 博客园 | OSChina | SF | 掘金
- 简书 | 搜狐号 | 头条号 | 百家号 | bilibili
- We are ApacheCN Open Source Organization, not ASF! We are fans of AI, and have no relationship with ASF!
- 合作 or 侵权,请联系 <apachecn@163.com> | 请抄送一份到 <wizard.z@foxmail.com>
赞助我们