乐趣区

ApacheCN-活动汇总-2019712

公告

  1. 欢迎大家在我们平台上投放广告。如果你希望在我们的专栏、文档或邮件中投放广告,请准备好各种尺寸的图片和专属链接,联系咸鱼(QQ 1034616238)。
  2. 我们组织了一个开源互助平台,方便开源组织和大 V 互相认识,互相帮助,整合资源。请回复这个帖子并注明组织 / 个人信息来申请加入。
  3. 请回复这个帖子来推荐希望翻译的内容。如果大家遇到了做得不错的教程或翻译项目,也可以推荐给我们。我们会联系项目的维护者,一起把它变得更好。
  4. 我们的各个公众平台接受个人学习博文,论文解读,比赛心得等 AI 相关文章投稿,请将文章链接发到这里,我们会每日从所有投稿博文中精选两篇,在 ApacheCN 全平台推送。
  5. 为了能够将开源事业做大做强,ApacheCN 需要与公益基金会(IT、教育类)合作,欢迎大家提供帮助。同时我们也接受社会各界的捐助。
  6. 如果你不希望再收到我们的邮件,请直接拉黑我们,不要浪费彼此的时间,谢谢合作。
  7. ByteInAI 是我们和 Datawhale、AI 有道、黄海广博士等组织或个人联合推出的 AI 垂直自媒体,是一个纯商业项目。如果你有意向投资这个项目,请联系 Datawhale(微信二维码)或咸鱼(QQ 1034616238)。

组织任务

认领须知:

  1. 请私聊片刻(529815144)、咸鱼(1034616238)、或飞龙(562826179)来认领任务,我们会把你拉进合伙人群。
  2. 除了列出的翻译项目之外,现有 翻译项目不接受新的负责人。如果你打算贡献,请直接提交 Pull Request。
  3. 如果你的想法没有列出(包括但不仅限于翻译项目),同样欢迎私聊我们。

翻译校对活动

UIUC CS241 系统编程中文讲义【校对】

参与方式:https://github.com/apachecn/u…

整体进度:https://github.com/apachecn/u…

项目仓库:https://github.com/apachecn/u…

认领:1/78,校对:0/78

章节 贡献者 进度
#Informal 词汇表
#Piazza:何时以及如何寻求帮助
编程技巧,第 1 部分
系统编程短篇小说和歌曲
C 编程,第 1 部分:简介 @blue-bird1
C 编程,第 2 部分:文本输入和输出
C 编程,第 3 部分:常见问题
C 编程,第 4 部分:字符串和结构
C 编程,第 5 部分:调试
C 编程,复习题
进程,第 1 部分:简介
分叉,第 1 部分:简介
分叉,第 2 部分:Fork,Exec,等等
进程控制,第 1 部分:使用信号等待宏
进程复习题
内存,第 1 部分:堆内存简介
内存,第 2 部分:实现内存分配器
内存,第 3 部分:粉碎堆栈示例
内存复习题
Pthreads,第 1 部分:简介
Pthreads,第 2 部分:实践中的用法
Pthreads,第 3 部分:并行问题(奖金)
Pthread 复习题
同步,第 1 部分:互斥锁
同步,第 2 部分:计算信号量
同步,第 3 部分:使用互斥锁和信号量
同步,第 4 部分:临界区问题
同步,第 5 部分:条件变量
同步,第 6 部分:实现障碍
同步,第 7 部分:读者编写器问题
同步,第 8 部分:环形缓冲区示例
同步复习题
死锁,第 1 部分:资源分配图
死锁,第 2 部分:死锁条件
死锁,第 3 部分:餐饮哲学家
死锁复习题
虚拟内存,第 1 部分:虚拟内存简介
管道,第 1 部分:管道介绍
管道,第 2 部分:管道编程秘密
文件,第 1 部分:使用文件
调度,第 1 部分:调度过程
调度,第 2 部分:调度过程:算法
IPC 复习题
POSIX,第 1 部分:错误处理
网络,第 1 部分:简介
网络,第 2 部分:使用 getaddrinfo
网络,第 3 部分:构建一个简单的 TCP 客户端
网络,第 4 部分:构建一个简单的 TCP 服务器
网络,第 5 部分:关闭端口,重用端口和其他技巧
网络,第 6 部分:创建 UDP 服务器
网络,第 7 部分:非阻塞 I O,select()和 epoll
RPC,第 1 部分:远程过程调用简介
网络复习题
文件系统,第 1 部分:简介
文件系统,第 2 部分:文件是 inode(其他一切只是数据 …)
文件系统,第 3 部分:权限
文件系统,第 4 部分:使用目录
文件系统,第 5 部分:虚拟文件系统
文件系统,第 6 部分:内存映射文件和共享内存
文件系统,第 7 部分:可扩展且可靠的文件系统
文件系统,第 8 部分:从 Android 设备中删除预装的恶意软件
文件系统,第 9 部分:磁盘块示例
文件系统复习题
过程控制,第 1 部分:使用信号等待宏
信号,第 2 部分:待处理的信号和信号掩码
信号,第 3 部分:提高信号
信号,第 4 部分:信号
信号复习题
考试主题
C 编程:复习题
多线程编程:复习题
同步概念:复习题
内存:复习题
管道:复习题
文件系统:复习题
网络:复习题
信号:复习题
系统编程笑话

Cython 3.0 中文文档【校对】

参与方式:https://github.com/apachecn/c…

整体进度:https://github.com/apachecn/c…

项目仓库:https://github.com/apachecn/c…

认领:0/37,校对:0/37

章节 贡献者 进度
Cython – 概述
安装 Cython
构建 Cython 代码
通过静态类型更快的代码
基础教程
调用 C 函数
使用 C 库
扩展类型(又名.cdef 类)
pxd 文件
Caveats
Profiling
Unicode 和传递字符串
内存分配
纯 Python 模式
使用 NumPy
使用 Python 数组
进一步阅读
相关工作
附录:在 Windows 上安装 MinGW
语言基础
扩展类型
扩展类型的特殊方法
在 Cython 模块之间共享声明
与外部 C 代码连接
源文件和编译
早期绑定速度
在 Cython 中使用 C ++
融合类型(模板)
将 Cython 代码移植到 PyPy
Limitations
Cython 和 Pyrex 之间的区别
键入的内存视图
实现缓冲协议
使用并行性
调试你的 Cython 程序
用于 NumPy 用户的 Cython
Pythran 作为 Numpy 后端

Numba 0.44 中文文档【校对】

参与方式:https://github.com/apachecn/n…

整体进度:https://github.com/apachecn/n…

项目仓库:https://github.com/apachecn/n…

认领:1/79,校对:1/79

章节 贡献者 进度
1. 用户手册
1.1。Numba 的约 5 分钟指南 @saltball 100%
1.2。概述
1.3。安装
1.4。使用@jit 编译 Python 代码
1.5。使用@generated_jit 进行灵活的专业化
1.6。创建 Numpy 通用函数
1.7。用 @jitclass 编译 python 类
1.8。使用@cfunc 创建 C 回调
1.9。提前编译代码
1.10。使用@jit 自动并行化
1.11。使用 @stencil 装饰器
1.12。从 JIT 代码 中回调到 Python 解释器
1.13。性能提示
1.14。线程层
1.15。故障排除和提示
1.16。常见问题
1.17。示例
1.18。会谈和教程
2. 参考手册
2.1。类型和签名
2.2。即时编译
2.3。提前编译
2.4。公用事业
2.5。环境变量
2.6。支持的 Python 功能
2.7。支持的 NumPy 功能
2.8。与 Python 语义的偏差
2.9。浮点陷阱
2.10。Python 2.7 寿命终止计划
3. 用于 CUDA GPU 的 Numba
3.1。概述
3.2。编写 CUDA 内核
3.3。内存管理
3.4。编写设备功能
3.5。CUDA Python 中支持的 Python 功能
3.6。支持的原子操作
3.7。随机数生成
3.8。设备管理
3.10。示例
3.11。使用 CUDA 模拟器 调试 CUDA Python
3.12。GPU 减少
3.13。CUDA Ufuncs 和广义 Ufuncs
3.14。共享 CUDA 内存
3.15。CUDA 阵列接口
3.16。CUDA 常见问题
4. CUDA Python 参考
4.1。CUDA 主机 API
4.2。CUDA 内核 API
4.3。内存管理
5. 用于 AMD ROC GPU 的 Numba
5.1。概述
5.2。编写 HSA 内核
5.3。内存管理
5.4。编写设备功能
5.5。支持的原子操作
5.6。代理商
5.7。ROC Ufuncs 和广义 Ufuncs
5.8。示例
6. 扩展 Numba
6.1。高级扩展 API
6.2。低级扩展 API
6.3。示例:间隔类型
7. 开发者手册
7.1。贡献给 Numba
7.2。Numba 建筑
7.3。多态调度
7.4。关于发电机的注意事项
7.5。关于 Numba Runtime 的注意事项
7.6。使用 Numba Rewrite Pass 获得乐趣和优化
7.7。实时变量分析
7.8。上市
7.9。模板注释
7.10。关于自定义管道的注意事项
7.11。环境对象
7.12。哈希 的注意事项
7.13。Numba 项目路线图
8. Numba 增强建议
9. 术语表

Scrapy 1.6 中文文档【校对】

参与方式:https://github.com/apachecn/s…

整体进度:https://github.com/apachecn/s…

项目仓库:https://github.com/apachecn/s…

认领:0/44,翻译:0/44

章节 校对者 进度
简介
Scrapy at a glance
安装指南
Scrapy 教程
实例
命令行工具
Spider
选择器
项目
项目加载器
Scrapy shell
项目管道
Feed 导出
请求和响应
链接提取器
设置
例外情况
Logging
统计数据集合
发送电子邮件
远程登录控制台
Web 服务
常见问题
调试 spiders
Spider 合约
常用做法
通用爬虫
使用浏览器的开发人员工具进行抓取
调试内存泄漏
下载和处理文件和图像
部署 Spider
AutoThrottle 扩展
Benchmarking
作业:暂停和恢复爬行
体系结构概述
下载器中间件
Spider 中间件
扩展
核心 API
信号
条目导出器
发行说明
为 Scrapy 贡献
版本控制和 API 稳定性

百页机器学习小书【翻译】

参与方式:https://github.com/apachecn/m…

整体进度:https://github.com/apachecn/m…

项目仓库:https://github.com/apachecn/m…

认领:10/12,翻译:1/12

章节 贡献者 进度
零、前言 @PEGASUS1993 100%
一、介绍 @PEGASUS1993
二、符号和定义 @PEGASUS1993
三、基本算法 @Rachel-Hu
四、线性算法剖析 @P3n9W31
五、基本实践 @chengchengbai
六、神经网络和深度学习 @Everfighting
七、问题和答案
八、高级实践
九、无监督学习 @onlyonewater
十、其它学习形式 @kjlintong
十一、总结 @kjlintong

短篇集【校对】

参与方式:https://github.com/apachecn/m…

整体进度:https://github.com/apachecn/m…

项目仓库:https://github.com/apachecn/m…

关于卷积神经网络:认领:2/12,校对:2/12

章节 贡献者 进度
关于卷积神经网络
1 @daewis 100%
2.1.1-2.1.3 @daewis 100%
2.1.4-2.1.6
2.2.1
2.2.2-2.2.3
2.3-2.4
3.1
3.2
3.3
3.4-3.5
4.1
4.2

写给不耐烦程序员的 JavaScript【校对】

参与方式:https://github.com/apachecn/i…

整体进度:https://github.com/apachecn/i…

项目仓库:https://github.com/apachecn/i…

认领:32/42,校对:31/42

章节 贡献者 进度
1. 关于本书(ES2019 版) @YouWillBe 100%
2. 常见问题:本书 @huangzijian888 100%
3. JavaScript 的历史和演变
4. 常见问题:JavaScript
5. 概览 @kj415j45 100%
6. 语法 @lq920320 100%
7. 在控制台上打印信息(console.* @lq920320 100%
8. 断言 API @lq920320 100%
9. 测验和练习入门 @so-hard 100%
10. 变量和赋值 @so-hard 100%
11. 值 @lq920320 100%
12. 运算符 @wizardforcel 100%
13. 非值 undefinednull @wizardforcel 100%
14. 布尔值 @wizardforcel 100%
15. 数字 @wizardforcel 100%
16. Math @wizardforcel 100%
17. Unicode – 简要介绍(高级) @wizardforcel 100%
18. 字符串 @wizardforcel 100%
19. 使用模板字面值和标记模板 @wizardforcel 100%
20. 符号 @wizardforcel 100%
21. 控制流语句 @wizardforcel 100%
22. 异常处理
23. 可调用值
24. 模块
25. 单个对象
26. 原型链和类 @lq920320 100%
27. 同步迭代 @lq920320 100%
28. 数组(Array @52admln 100%
29. 类型化数组:处理二进制数据(高级)
30. 映射(Map @so-hard 100%
31. WeakMaps(WeakMap
32. 集(Set @liuyepiaoxiang 100%
33. WeakSets(WeakSet
34. 解构 @Kavelaa 100%
35. 同步生成器(高级)
36. JavaScript 中的异步编程 @Kavelaa 100%
37. 异步编程的 Promise @iChrisJ 100%
38. 异步函数 @iChrisJ 100%
39. 正则表达式(RegExp @iChrisJ 100%
40. 日期(Date @facebesidewyj 100%
41. 创建和解析 JSON(JSON @xdyushenli
42. 其余章节在哪里? @wizardforcel 100%

seaborn 0.9 中文文档【翻译】

参与方式:https://github.com/apachecn/s…

整体进度:https://github.com/apachecn/s…

项目仓库:https://github.com/apachecn/s…

认领:64/74,翻译:51/74

序号 章节 译者 进度
1 An introduction to seaborn @yiran7324 100%
2 Installing and getting started @neolei 100%
3 Visualizing statistical relationships @JNJYan 100%
4 Plotting with categorical data @hold2010 100%
5 Visualizing the distribution of a dataset @alohahahaha 100%
6 Visualizing linear relationships @friedhelm739
7 Building structured multi-plot grids @keyianpai 100%
8 Controlling figure aesthetics @P3n9W31 100%
9 Choosing color palettes @Modrisco 100%
10 seaborn.relplot @Stuming
11 seaborn.scatterplot @tututwo
12 seaborn.lineplot @tututwo
13 seaborn.catplot @LIJIANcoder97 100%
14 seaborn.stripplot @LIJIANcoder97 100%
15 seaborn.swarmplot @LIJIANcoder97 100%
16 seaborn.boxplot @FindNorthStar 100%
17 seaborn.violinplot @FindNorthStar 100%
18 seaborn.boxenplot @FindNorthStar 100%
19 seaborn.pointplot @FindNorthStar 100%
20 seaborn.barplot @melon-bun
21 seaborn.countplot @Stuming 100%
22 seaborn.jointplot @Stuming
23 seaborn.pairplot @Stuming
24 seaborn.distplot @hyuuo 100%
25 seaborn.kdeplot @hyuuo 100%
26 seaborn.rugplot @P3n9W31 100%
27 seaborn.lmplot @P3n9W31 100%
28 seaborn.regplot @P3n9W31 100%
29 seaborn.residplot @P3n9W31 100%
30 seaborn.heatmap @hyuuo 100%
31 seaborn.clustermap
32 seaborn.FacetGrid @hyuuo 100%
33 seaborn.FacetGrid.map @sfw134 100%
34 seaborn.FacetGrid.map_dataframe @sfw134 100%
35 seaborn.PairGrid @sfw134
36 seaborn.PairGrid.map @sfw134
37 seaborn.PairGrid.map_diag @sfw134
38 seaborn.PairGrid.map_offdiag @sfw134
39 seaborn.PairGrid.map_lower @sfw134
40 seaborn.PairGrid.map_upper @sfw134
41 seaborn.JointGrid
42 seaborn.JointGrid.plot
43 seaborn.JointGrid.plot_joint
44 seaborn.JointGrid.plot_marginals
45 seaborn.set @lbllol365 100%
46 seaborn.axes_style @lbllol365 100%
47 seaborn.set_style @lbllol365 100%
48 seaborn.plotting_context
49 seaborn.set_context
50 seaborn.set_color_codes
51 seaborn.reset_defaults
52 seaborn.reset_orig
53 seaborn.set_palette @Modrisco 100%
54 seaborn.color_palette @Modrisco 100%
55 seaborn.husl_palette @Modrisco 100%
56 seaborn.hls_palette @Modrisco 100%
57 seaborn.cubehelix_palette @Modrisco 100%
58 seaborn.dark_palette @Modrisco 100%
59 seaborn.light_palette @Modrisco 100%
60 seaborn.diverging_palette @Modrisco 100%
61 seaborn.blend_palette @Modrisco 100%
62 seaborn.xkcd_palette @Modrisco 100%
63 seaborn.crayon_palette @Modrisco 100%
64 seaborn.mpl_palette @Modrisco 100%
65 seaborn.choose_colorbrewer_palette @Modrisco 100%
66 seaborn.choose_cubehelix_palette @Modrisco 100%
67 seaborn.choose_light_palette @Modrisco 100%
68 seaborn.choose_dark_palette @Modrisco 100%
69 seaborn.choose_diverging_palette @Modrisco 100%
70 seaborn.load_dataset @Modrisco 100%
71 seaborn.despine @Modrisco 100%
72 seaborn.desaturate @Modrisco 100%
73 seaborn.saturate @Modrisco 100%
74 seaborn.set_hls_values @Modrisco 100%

Git 中文参考【校对】

参与方式:https://github.com/apachecn/g…

整体进度:https://github.com/apachecn/g…

项目仓库:https://github.com/apachecn/g…

认领:14/83,校对:12/83

序号 章节 贡献者 进度
1 git
2 git-config @honglyua 100%
3 git-help @honglyua 100%
4 git-init @honglyua 100%
5 git-clone @honglyua 100%
6 git-add @yulezheng 100%
7 git-status @honglyua 100%
8 git-diff @honglyua 100%
9 git-commit @yulezheng
10 git-reset @honglyua 100%
11 git-rm @honglyua 100%
12 git-mv @honglyua 100%
13 git-branch @honglyua 100%
14 git-checkout
15 git-merge
16 git-mergetool
17 git-log
18 git-stash
19 git-tag
20 git-worktree
21 git-fetch
22 git-pull @Mrhuangyi 100%
23 git-push @Mrhuangyi
24 git-remote
25 git-submodule
26 git-show
27 git-log
29 git-shortlog
30 git-describe
31 git-apply
32 git-cherry-pick
34 git-rebase
35 git-revert
36 git-bisect
37 git-blame
38 git-grep
39 gitattributes
40 giteveryday
41 gitglossary
42 githooks
43 gitignore
44 gitmodules
45 gitrevisions
46 gittutorial
47 gitworkflows
48 git-am
50 git-format-patch
51 git-send-email
52 git-request-pull
53 git-svn
54 git-fast-import
55 git-clean
56 git-gc
57 git-fsck
58 git-reflog
59 git-filter-branch
60 git-instaweb
61 git-archive
62 git-bundle
63 git-daemon
64 git-update-server-info
65 git-cat-file
66 git-check-ignore
67 git-checkout-index
68 git-commit-tree
69 git-count-objects
70 git-diff-index
71 git-for-each-ref
72 git-hash-object
73 git-ls-files
74 git-merge-base
75 git-read-tree
76 git-rev-list
77 git-rev-parse
78 git-show-ref
79 git-symbolic-ref
80 git-update-index
81 git-update-ref
82 git-verify-pack
83 git-write-tree

HBase 3.0 中文参考指南【校对】

参与方式:https://github.com/apachecn/h…

整体进度:https://github.com/apachecn/h…

项目仓库:https://github.com/apachecn/h…

认领:14/31,校对:14/31

章节 贡献者 进度
Preface @xixici 100%
Getting Started @xixici 100%
Apache HBase Configuration @xixici 100%
Upgrading @xixici 100%
The Apache HBase Shell @xixici 100%
Data Model
HBase and Schema Design @RaymondCode 100%
RegionServer Sizing Rules of Thumb
HBase and MapReduce @BridgetLai 100%
Securing Apache HBase
Architecture
In-memory Compaction @mychaow 100%
Backup and Restore @mychaow 100%
Synchronous Replication @mychaow 100%
Apache HBase APIs @xixici 100%
Apache HBase External APIs @xixici 100%
Thrift API and Filter Language @xixici 100%
HBase and Spark @TsingJyujing 100%
Apache HBase Coprocessors
Apache HBase Performance Tuning
Troubleshooting and Debugging Apache HBase
Apache HBase Case Studies
Apache HBase Operational Management
Building and Developing Apache HBase
Unit Testing HBase Applications
Protobuf in HBase
Procedure Framework (Pv2): HBASE-12439
AMv2 Description for Devs
ZooKeeper
Community
Appendix

UCB Prob140:面向数据科学的概率论【翻译】

参与方式:https://github.com/apachecn/p…

整体进度:https://github.com/apachecn/p…

项目仓库:https://github.com/apachecn/p…

认领:22/25,翻译:19/25

标题 译者 翻译进度
一、基础 飞龙 100%
二、计算几率 飞龙 100%
三、随机变量 飞龙 100%
四、事件之间的关系 @biubiubiuboomboomboom 100%
五、事件集合 >0%
六、随机计数 @viviwong 100%
七、泊松化 @YAOYI626 100%
八、期望 50%
九、条件(续) @YAOYI626 100%
十、马尔科夫链 喵十八 100%
十一、马尔科夫链(续) 喵十八 100%
十二、标准差 缺只萨摩 100%
十三、方差和协方差 缺只萨摩 100%
十四、中心极限定理 喵十八 100%
十五、连续分布 @ThunderboltSmile
十六、变换 @hellozhaihy
十七、联合密度 @Winchester-Yi 100%
十八、正态和 Gamma 族 @Winchester-Yi 100%
十九、和的分布 平淡的天 100%
二十、估计方法 平淡的天 100%
二十一、Beta 和二项 @lvzhetx 100%
二十二、预测 50%
二十三、联合正态随机变量 @JUNE951234
二十四、简单线性回归 @ThomasCai 100%
二十五、多元回归 @lanhaixuan 100%

Machine Learning Mastery【校对】

参与方式:https://github.com/apachecn/m…

整体进度:https://github.com/apachecn/m…

项目仓库:https://github.com/apachecn/m…

Keras:认领:0/46,校对:0/46

XGBoost:认领:0/18,校对:0/18

章节 贡献者 进度
深度学习与 Keras
Keras 中神经网络模型的 5 步生命周期
在 Python 迷你课程中应用深度学习
Keras 深度学习库的二元分类教程
如何用 Keras 构建多层感知器神经网络模型
如何在 Keras 中检查深度学习模型
10 个用于 Amazon Web Services 深度学习的命令行秘籍
机器学习卷积神经网络的速成课程
如何在 Python 中使用 Keras 进行深度学习的度量
深度学习书籍
深度学习课程
你所知道的深度学习是一种谎言
如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
神经网络中批量和迭代之间的区别是什么?
在 Keras 展示深度学习模型训练历史
基于 Keras 的深度学习模型中的 dropout 正则化
评估 Keras 中深度学习模型的表现
如何评价深度学习模型的技巧
小批量梯度下降的简要介绍以及如何配置批量大小
在 Keras 中获得深度学习帮助的 9 种方法
如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
如何用 Keras 进行预测
用 Keras 进行深度学习的图像增强
8 个深度学习的鼓舞人心的应用
Python 深度学习库 Keras 简介
Python 深度学习库 TensorFlow 简介
Python 深度学习库 Theano 简介
如何使用 Keras 函数式 API 进行深度学习
Keras 深度学习库的多类分类教程
多层感知器神经网络速成课程
基于卷积神经网络的 Keras 深度学习库中的目标识别
流行的深度学习库
用深度学习预测电影评论的情感
Python 中的 Keras 深度学习库的回归教程
如何使用 Keras 获得可重现的结果
如何在 Linux 服务器上运行深度学习实验
保存并加载您的 Keras 深度学习模型
用 Keras 逐步开发 Python 中的第一个神经网络
用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
如何使用预训练的 VGG 模型对照片中的物体进行分类
在 Python 和 Keras 中对深度学习模型使用学习率调度
如何在 Keras 中可视化深度学习神经网络模型
什么是深度学习?
何时使用 MLP,CNN 和 RNN 神经网络
为什么用随机权重初始化神经网络?
XGBoost
通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
如何在 Python 中调优 XGBoost 的多线程支持
如何配置梯度提升算法
在 Python 中使用 XGBoost 进行梯度提升的数据准备
如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
如何在 Python 中使用 XGBoost 评估梯度提升模型
在 Python 中使用 XGBoost 的特征重要性和特征选择
浅谈机器学习的梯度提升算法
应用机器学习的 XGBoost 简介
如何在 macOS 上为 Python 安装 XGBoost
如何在 Python 中使用 XGBoost 保存梯度提升模型
从梯度提升开始,比较 165 个数据集上的 13 种算法
在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
如何使用 Amazon Web Services 在云中训练 XGBoost 模型
在 Python 中使用 XGBoost 调整梯度提升的学习率
如何在 Python 中使用 XGBoost 调整决策树的数量和大小
如何在 Python 中使用 XGBoost 可视化梯度提升决策树
在 Python 中开始使用 XGBoost 的 7 步迷你课程

Pytorch 1.0 中文文档【校对】

参与方式:https://github.com/apachecn/p…

整体进度:https://github.com/apachecn/p…

项目仓库:https://github.com/apachecn/p…

认领:22/76,校对:1/76

章节 译者 进度 校验者 进度
教程部分
Deep Learning with PyTorch: A 60 Minute Blitz @bat67 100% @AllenZYJ
What is PyTorch? @bat67 100% @AllenZYJ
Autograd: Automatic Differentiation @bat67 100% @AllenZYJ
Neural Networks @bat67 100% @AllenZYJ
Training a Classifier @bat67 100% @AllenZYJ
Optional: Data Parallelism @bat67 100%
Data Loading and Processing Tutorial @yportne13 100%
Learning PyTorch with Examples @bat67 100% @Smilexuhc
Transfer Learning Tutorial @jiangzhonglian 100% @infdahai
Deploying a Seq2Seq Model with the Hybrid Frontend @cangyunye 100%
Saving and Loading Models @bruce1408 100% @luxinfeng
What is torch.nn really? @lhc741 100% @luxinfeng
Finetuning Torchvision Models @ZHHAYO 100% @luxinfeng
Spatial Transformer Networks Tutorial @PEGASUS1993 100% @Smilexuhc
Neural Transfer Using PyTorch @bdqfork 100%
Adversarial Example Generation @cangyunye 100% @infdahai
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX @PEGASUS1993 100%
Chatbot Tutorial @a625687551 100% @enningxie
Generating Names with a Character-Level RNN @hhxx2015 100% @hijkzzz 100%
Classifying Names with a Character-Level RNN @hhxx2015 100% @hijkzzz
Deep Learning for NLP with Pytorch @bruce1408 100%
Introduction to PyTorch @guobaoyo 100%
Deep Learning with PyTorch @bdqfork 100%
Word Embeddings: Encoding Lexical Semantics @sight007 100% @Smilexuhc
Sequence Models and Long-Short Term Memory Networks @ETCartman 100%
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF @apachecn 100% @enningxie
Translation with a Sequence to Sequence Network and Attention @mengfu188 100%
DCGAN Tutorial @wangshuai9517 100% @infdahai
Reinforcement Learning (DQN) Tutorial @friedhelm739 100% @infdahai
Creating Extensions Using numpy and scipy @cangyunye 100%
Custom C++ and CUDA Extensions @P3n9W31 100%
Extending TorchScript with Custom C++ Operators @apachecn 100% @sunxia233
Writing Distributed Applications with PyTorch @firdameng 100%
PyTorch 1.0 Distributed Trainer with Amazon AWS @yportne13 100%
ONNX Live Tutorial @PEGASUS1993 100%
Loading a PyTorch Model in C++ @talengu 100%
Using the PyTorch C++ Frontend @solerji 100%
文档部分
Autograd mechanics @PEGASUS1993 100%
Broadcasting semantics @PEGASUS1993 100%
CUDA semantics @jiangzhonglian 100%
Extending PyTorch @PEGASUS1993 100%
Frequently Asked Questions @PEGASUS1993 100%
Multiprocessing best practices @cvley 100%
Reproducibility @apachecn 100% @bruce1408
Serialization semantics @yuange250 100%
Windows FAQ @PEGASUS1993 100%
torch @infdahai 100%
Tensors @infdahai
Random sampling @apachecn 100%
Serialization, Parallelism, Utilities @apachecn 100%
Pointwise Ops @apachecn 100%
Reduction Ops @apachecn 100%
Comparison Ops @apachecn 100%
Spectral Ops @apachecn 100%
Other Operations @apachecn 100%
BLAS and LAPACK Operations @apachecn 100%
torch.Tensor @hijkzzz 100%
Tensor Attributes @yuange250 100%
Type Info @PEGASUS1993 100%
torch.sparse @hijkzzz 100%
torch.cuda @bdqfork 100%
torch.Storage @yuange250 100%
torch.nn @gongel 100%
torch.nn.functional @hijkzzz 100%
torch.nn.init @GeneZC 100%
torch.optim @apachecn 100% @zonasw
Automatic differentiation package – torch.autograd @gfjiangly 100%
Distributed communication package – torch.distributed @univeryinli 100%
Probability distributions – torch.distributions @hijkzzz 100%
Torch Script @keyianpai 100%
Multiprocessing package – torch.multiprocessing @hijkzzz 100%
torch.utils.bottleneck @belonHan 100%
torch.utils.checkpoint @belonHan 100%
torch.utils.cpp_extension @belonHan 100%
torch.utils.data @BXuan694 100%
torch.utils.dlpack @kunwuz 100%
torch.hub @kunwuz 100%
torch.utils.model_zoo @BXuan694 100%
torch.onnx @guobaoyo 100%
Distributed communication package (deprecated) – torch.distributed.deprecated @luxinfeng 100%
torchvision Reference @BXuan694 100%
torchvision.datasets @BXuan694 100%
torchvision.models @BXuan694 100%
torchvision.transforms @BXuan694 100%
torchvision.utils @BXuan694 100%

OpenCV 4.0 中文教程【校对】

参与方式:https://github.com/apachecn/o…

整体进度:https://github.com/apachecn/o…

项目仓库:https://github.com/apachecn/o…

认领:29/51,校对:29/51。

章节 贡献者 进度
1. 简介
1.1 OpenCV-Python 教程简介 @wstone0011 100%
1.2 安装 OpenCV—Python @wstone0011 100%
2. GUI 功能
2.1 图像入门 @ranxx 100%
2.2 视频入门 @ranxx 100%
2.3 绘图功能 @ranxx 100%
2.4 鼠标作为画笔 @ranxx 100%
2.5 作为调色板的跟踪栏 @ranxx 100%
3. 核心操作
3.1 图像基本操作 @luxinfeng 100%
3.2 图像的算术运算 @luxinfeng 100%
3.3 性能测量和改进技术 @luxinfeng 100%
4. 图像处理
4.1 更改颜色空间 @friedhelm739 100%
4.2 图像的几何变换 @friedhelm739 100%
4.3 图像阈值 @friedhelm739 100%
4.4 平滑图像 @friedhelm739 100%
4.5 形态转换 @friedhelm739 100%
4.6 图像梯度 @friedhelm739 100%
4.7 Canny 边缘检测
4.8 影像金字塔
4.9 轮廓
4.10 直方图
4.11 图像转换
4.12 模板匹配
4.13 霍夫线变换
4.14 霍夫圆变换
4.15 基于分水岭算法的图像分割
基于 GrabCut 算法的交互式前景提取
5. 特征检测和描述
5.1 了解功能 @3lackrush 100%
5.2 Harris 角点检测
5.3 Shi-Tomasi 角点检测和追踪的良好特征
5.4 SIFT 简介(尺度不变特征变换)
5.5 SURF 简介(加速鲁棒特性)
5.6 角点检测的 FAST 算法
5.7 简介(二进制鲁棒独立基本特征)
5.8 ORB(定向快速和快速旋转)
5.9 特征匹配
5.10 特征匹配 + Homography 查找对象
6. 视频分析
6.1 Meanshift 和 Camshift @xmmmmmovo 100%
6.2 光流 @xmmmmmovo 100%
6.3 背景减法 @xmmmmmovo 100%
7. 相机校准和 3D 重建
7.1 相机校准 @xmmmmmovo 100%
7.2 姿势估计 @xmmmmmovo 100%
7.3 极线几何 @xmmmmmovo 100%
7.4 立体图像的深度图 @xmmmmmovo 100%
8. 机器学习
8.1 K- 最近邻 @wstone0011 100%
8.2 支持向量机(SVM) @wstone0011 100%
8.3 K-Means 聚类 @wstone0011 100%
9. 计算摄影
9.1 图像去噪
9.2 图像修复
9.3 高动态范围(HDR)
10. 目标检测
10.1 使用 Haar Cascades 进行人脸检测 @jiangzhonglian 100%
11. OpenCV-Python 绑定
11.1 OpenCV-Python 绑定如何工作? @daidai21 100%

认领完毕

UCB CS61b:Java 中的数据结构【翻译】

参与方式:https://github.com/apachecn/c…

整体进度:https://github.com/apachecn/c…

项目仓库:https://github.com/apachecn/c…

认领:12/12,翻译:10/12

笔记整理活动

CS224n 自然语言处理

参与方式:https://github.com/apachecn/s…

整体进度:https://github.com/apachecn/s…

项目仓库:https://github.com/apachecn/s…

认领:12/20,整理:1/20

章节 贡献者 进度
Lecture 1 @cx123cx456
Lecture 2 @AllenZYJ
Lecture 3 @cx123cx456
Lecture 4 @ZSIRS
Lecture 5 @ZSIRS
Lecture 6 @ZSIRS
Lecture 7 @neolei
Lecture 8 @Qichao-Ge
Lecture 9 @NewDreamstyle192
Lecture 10 @enningxie
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17 @pingjing233
Lecture 18
Lecture 19
Lecture 20 @Willianan 100%

关于我们

我们是一个大型开源社区,旗下 QQ 群共一万余人,订阅用户至少一万人。Github Star 数量超过 40k 个,在所有 Github 组织中排名前 150。网站日 uip 超过 4k,Alexa 排名的峰值为 20k。我们的核心成员拥有 CSDN 博客专家和简书程序员优秀作者认证。我们与 Datawhale、AI 有道、黄海广博士等国内知名开源组织和大 V 合作,组织公益性的翻译活动、学习活动和比赛组队活动。

与商业组织不同,我们并不会追逐热点,或者唯利是图。作为公益组织,我们将完成项目放在首要位置,并有足够时间把项目打磨到极致。我们希望做出广大 AI 爱好者真正需要的东西,打造真正有价值的长尾作品。

  • 【导航】ibooker.org.cn
  • 【归档】home.apachecn.org
  • 【社区】ibooker.org.cn/forums
  • 【Github】@ApacheCN
  • 【知识星球】ApacheCN
  • 自媒体平台

    • 微博:@ApacheCN
    • 知乎专栏:AILearning
    • 公众号:ApacheCN
    • CSDN | 博客园 | OSChina | SF | 掘金
    • 简书 | 搜狐号 | 头条号 | 百家号 | bilibili
  • We are ApacheCN Open Source Organization, not ASF! We are fans of AI, and have no relationship with ASF!
  • 合作 or 侵权,请联系 <apachecn@163.com> | 请抄送一份到 <wizard.z@foxmail.com>

赞助我们

退出移动版