关于java:通俗易懂的JUC源码剖析CyclicBarrier

前言

咱们晓得,CountDownLatch的计数器是一次性的,它不能重置。也就是说,当count值变为0时,再调用await()办法会立刻返回,不会阻塞。
本文要说的CyclicBarrier就是一种能够重置计数器的线程同步工具类。CyclicBarrier字面意思是“回环屏障”,它能够让一组线程全副达到一个状态后再全副同时往下执行。之所以叫回环是因为当所有线程执行结束,并重置CyclicBarrier的状态后它能够被重用。而之所以叫屏障是因为当某个线程调用await办法后就会被阻塞,这个阻塞点就称为屏障,等其余所有线程都调用了await办法后,这组线程就会一起冲破屏障,并往下执行。

应用场景

两个子工作别离执行本人的工作,等它们都执行完后,主工作汇总子工作的后果,并做一些解决,解决实现后两个子工作又持续做其余事件。示例代码:

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
    private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2, () -> {
        try {
            System.out.println("main task merge subtask result begin");
            // simulate merge work
            Thread.sleep(5000);
            System.out.println("main task merge subtask result finished");
        } catch (InterruptedException e) {
            // ignore
        }
    });
    public static void main(String[] args) {
        Thread thread1 = new Thread(() -> {
            try {
                Thread.sleep(4000);
                System.out.println("thread1 finished its work");
                cyclicBarrier.await();
                System.out.println("thread1 continue work");
            } catch (InterruptedException | BrokenBarrierException e) {
                // ignore
            }
        });
        Thread thread2 = new Thread(() -> {
            try {
                Thread.sleep(5000);
                System.out.println("thread2 finished its work");
                cyclicBarrier.await();
                System.out.println("thread2 continue work");
            } catch (InterruptedException | BrokenBarrierException e) {
                // ignore
            }
        });
        thread1.start();
        thread2.start();
    }
}

输入后果:

能够看到,线程1和线程2调用await()时,会被阻塞,等主线程工作实现后,线程1和线程2就会冲破屏障,持续往下执行。这里的主线程合并工作是可选的,也就是说能够间接new CyclicBarric(int parties),这种状况下就没有达到屏障后的合并工作,会间接在全副线程达到屏障后同时冲破屏障往下执行。能够比喻成举办同学聚会的场景。有20集体加入团聚,第1集体达到集合地点后要等其他人,第2个,第3个,…第19集体也须要等,当最初一个人到的时候,全副的20集体就能够登程去嗨皮了。

下面介绍的是“屏障”的利用场景,再来看个“回环”的利用场景。

假如一个工作由阶段1,阶段2,阶段3这三个阶段组成,每个线程都串行的顺次执行阶段1,2,3。当多个线程执行工作时,必须保障等所有线程都执行完阶段1后,能力执行阶段2,同样地,也必须保障所有线程都执行完阶段2后,能力执行阶段3。示例代码:

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo2 {
    private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2);
    public static void main(String[] args) {
        Thread thread1 = new Thread(() -> {
            try {
                System.out.println("thread1 step 1");
                cyclicBarrier.await();
                System.out.println("thread1 step 2");
                cyclicBarrier.await();
                System.out.println("thread1 step 3");
            } catch (InterruptedException | BrokenBarrierException e) {
                // ignore
            }
        });
        Thread thread2 = new Thread(() -> {
            try {
                System.out.println("thread2 step 1");
                cyclicBarrier.await();
                System.out.println("thread2 step 2");
                cyclicBarrier.await();
                System.out.println("thread2 step 3");
            } catch (InterruptedException | BrokenBarrierException e) {
                // ignore
            }
        });
        thread1.start();
        thread2.start();
 }
}

输入后果如下:

能够看到,实现了这种同阶段期待的成果。

实现原理

先来看看重要属性:

private static class Generation {
    // 屏障是否被突破
    boolean broken = false;
}
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock();
/** Condition to wait on until tripped */
private final Condition trip = lock.newCondition();
/** The number of parties */
private final int parties;
/* The command to run when tripped */
private final Runnable barrierCommand;
/** The current generation */
private Generation generation = new Generation();
/**
 * Number of parties still waiting. Counts down from parties to 0 on each generation.
 * It is reset to parties on each new generation or when broken. 
 */
private int count;

能够看到,CyclicBarrier里用了独占锁ReentrantLock实现多线程间的计数器同步,parties示意当多少个线程达到屏障后,冲破屏障往下执行,而count示意以后还残余多少个线程还未达到屏障,当所有线程都冲破屏障后,它又会在新一轮(new generation)被重置为parties的值。也就是说,count和Generation是用来实现重置成果的。

再看看构造方法的属性赋值:

public CyclicBarrier(int parties, Runnable barrierAction) {
    if (parties <= 0) throw new IllegalArgumentException();
    this.parties = parties;
    this.count = parties;
    this.barrierCommand = barrierAction;
}

再来看看要害办法:
await()

public int await() throws InterruptedException, BrokenBarrierException {
    try {
        // false示意不设置超时
        return dowait(false, 0L);
    } catch (TimeoutException toe) {
        throw new Error(toe); // cannot happen
    }
}

dowait()办法代码如下:

// timed:是否超时期待, nanos:超时工夫
private int dowait(boolean timed, long nanos)
    throws InterruptedException, BrokenBarrierException,
 TimeoutException {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        final Generation g = generation;
        if (g.broken)
               throw new BrokenBarrierException();
        if (Thread.interrupted()) {
            breakBarrier();
            throw new InterruptedException();
        }
        int index = --count;
        // 如果index为0,示意所有线程都已达到了屏障,此时去执行初始化时设定的barrierCommand(如果有的话)
        if (index == 0) {  // tripped
           boolean ranAction = false;
           try {
               final Runnable command = barrierCommand;
               if (command != null)
                   command.run();
               ranAction = true;
               // 唤醒其余线程,并重置进行下一轮
               nextGeneration();
               // 返回
               return 0;
           } finally {
               if (!ranAction)
                   breakBarrier();
           }
        }
        // 否则须要等其余线程都达到屏障
        // loop until tripped, broken, interrupted, or timed out
        for (;;) {
             try {
                 // 辨别超时期待与不超时期待
                 if (!timed)
                    trip.await();
                 else if (nanos > 0L)
                    nanos = trip.awaitNanos(nanos);
             } catch (InterruptedException ie) {
                   if (g == generation && ! g.broken) {
                       breakBarrier();
                       throw ie;
                   } else {
                    // We're about to finish waiting even if we had not
 // been interrupted, so this interrupt is deemed to // "belong" to subsequent execution. 
                       Thread.currentThread().interrupt();
                   }
            }
            if (g.broken)
                throw new BrokenBarrierException();
            // g != generation 阐明被唤醒后已重置了轮次,阐明所有线程均已达到线程屏障,能够返回了。
            if (g != generation)
                return index;
            // 期待超时,抛出超时异样    
            if (timed && nanos <= 0L) {
                breakBarrier();
                throw new TimeoutException();
            }
        }
    } finally {
        lock.unlock();
    }
}

其中,nextGeneration()办法如下:

private void nextGeneration() {
    // signal completion of last generation
    // 唤醒期待在trip条件(即屏障)上的其余所有线程
    trip.signalAll();
    // set up next generation
    // 重置count的值为初始值parties
    count = parties;
    // 重置以后轮次
    generation = new Generation();
}

参考资料:
《Java并发编程之美》

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理