作者:LittleMagic
“为什么我的 Flink 作业 Web UI 中只显示出了一个框,并且 Records Sent 和Records Received 指标都是 0 ?是我的程序写得有问题吗?”
Flink 算子链简介
笔者在 Flink 社区群里常常能看到相似这样的疑难。这种状况简直都不是程序有问题,而是因为 Flink 的 operator chain ——即算子链机制导致的,即提交的作业的执行打算中,所有算子的并发实例(即 sub-task )都因为满足特定条件而串成了整体来执行,天然就察看不到算子之间的数据流量了。
当然上述是一种非凡状况。咱们更常见到的是只有局部算子失去了算子链机制的优化,如官网文档中呈现过屡次的下图所示,留神 Source 和 map() 算子。
算子链机制的益处是不言而喻的:所有 chain 在一起的 sub-task 都会在同一个线程(即 TaskManager 的 slot)中执行,可能缩小不必要的数据交换、序列化和上下文切换,从而进步作业的执行效率。
铺垫了这么多,接下来就通过源码简略看看算子链产生的条件,以及它是如何在 Flink Runtime 中实现的。
逻辑打算中的算子链
对 Flink Runtime 稍有理解的看官应该晓得,Flink 作业的执行打算会用三层图构造来示意,即:
- StreamGraph —— 原始逻辑执行打算
- JobGraph —— 优化的逻辑执行打算(Web UI 中看到的就是这个)
- ExecutionGraph —— 物理执行打算
算子链是在优化逻辑打算时退出的,也就是由 StreamGraph 生成 JobGraph 的过程中。那么咱们来到负责生成 JobGraph 的 o.a.f.streaming.api.graph.StreamingJobGraphGenerator 类,查看其外围办法 createJobGraph() 的源码。
private JobGraph createJobGraph() {
// make sure that all vertices start immediately
jobGraph.setScheduleMode(streamGraph.getScheduleMode());
// Generate deterministic hashes for the nodes in order to identify them across
// submission iff they didn't change.
Map<Integer, byte[]> hashes = defaultStreamGraphHasher.traverseStreamGraphAndGenerateHashes(streamGraph);
// Generate legacy version hashes for backwards compatibility
List<Map<Integer, byte[]>> legacyHashes = new ArrayList<>(legacyStreamGraphHashers.size());
for (StreamGraphHasher hasher : legacyStreamGraphHashers) {
legacyHashes.add(hasher.traverseStreamGraphAndGenerateHashes(streamGraph));
}
Map<Integer, List<Tuple2<byte[], byte[]>>> chainedOperatorHashes = new HashMap<>();
setChaining(hashes, legacyHashes, chainedOperatorHashes);
setPhysicalEdges();
// 略......
return jobGraph;
}
可见,该办法会先计算出 StreamGraph 中各个节点的哈希码作为惟一标识,并创立一个空的 Map 构造保留行将被链在一起的算子的哈希码,而后调用 setChaining() 办法,如下源码所示。
<pre class="cm-s-default" style="color: rgb(55, 61, 65); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">private void setChaining(Map<Integer, byte[]> hashes, List<Map<Integer, byte[]>> legacyHashes, Map<Integer, List<Tuple2<byte[], byte[]>>> chainedOperatorHashes) { for (Integer sourceNodeId : streamGraph.getSourceIDs()) { createChain(sourceNodeId, sourceNodeId, hashes, legacyHashes, 0, chainedOperatorHashes); }}</pre>
可见是一一遍历 StreamGraph 中的 Source 节点,并调用 createChain() 办法。createChain() 是逻辑打算层创立算子链的外围办法,残缺源码如下,有点长。
private List<StreamEdge> createChain(
Integer startNodeId,
Integer currentNodeId,
Map<Integer, byte[]> hashes,
List<Map<Integer, byte[]>> legacyHashes,
int chainIndex,
Map<Integer, List<Tuple2<byte[], byte[]>>> chainedOperatorHashes) {
if (!builtVertices.contains(startNodeId)) {
List<StreamEdge> transitiveOutEdges = new ArrayList<StreamEdge>();
List<StreamEdge> chainableOutputs = new ArrayList<StreamEdge>();
List<StreamEdge> nonChainableOutputs = new ArrayList<StreamEdge>();
StreamNode currentNode = streamGraph.getStreamNode(currentNodeId);
for (StreamEdge outEdge : currentNode.getOutEdges()) {
if (isChainable(outEdge, streamGraph)) {
chainableOutputs.add(outEdge);
} else {
nonChainableOutputs.add(outEdge);
}
}
for (StreamEdge chainable : chainableOutputs) {
transitiveOutEdges.addAll(
createChain(startNodeId, chainable.getTargetId(), hashes, legacyHashes, chainIndex + 1, chainedOperatorHashes));
}
for (StreamEdge nonChainable : nonChainableOutputs) {
transitiveOutEdges.add(nonChainable);
createChain(nonChainable.getTargetId(), nonChainable.getTargetId(), hashes, legacyHashes, 0, chainedOperatorHashes);
}
List<Tuple2<byte[], byte[]>> operatorHashes =
chainedOperatorHashes.computeIfAbsent(startNodeId, k -> new ArrayList<>());
byte[] primaryHashBytes = hashes.get(currentNodeId);
OperatorID currentOperatorId = new OperatorID(primaryHashBytes);
for (Map<Integer, byte[]> legacyHash : legacyHashes) {
operatorHashes.add(new Tuple2<>(primaryHashBytes, legacyHash.get(currentNodeId)));
}
chainedNames.put(currentNodeId, createChainedName(currentNodeId, chainableOutputs));
chainedMinResources.put(currentNodeId, createChainedMinResources(currentNodeId, chainableOutputs));
chainedPreferredResources.put(currentNodeId, createChainedPreferredResources(currentNodeId, chainableOutputs));
if (currentNode.getInputFormat() != null) {
getOrCreateFormatContainer(startNodeId).addInputFormat(currentOperatorId, currentNode.getInputFormat());
}
if (currentNode.getOutputFormat() != null) {
getOrCreateFormatContainer(startNodeId).addOutputFormat(currentOperatorId, currentNode.getOutputFormat());
}
StreamConfig config = currentNodeId.equals(startNodeId)
? createJobVertex(startNodeId, hashes, legacyHashes, chainedOperatorHashes)
: new StreamConfig(new Configuration());
setVertexConfig(currentNodeId, config, chainableOutputs, nonChainableOutputs);
if (currentNodeId.equals(startNodeId)) {
config.setChainStart();
config.setChainIndex(0);
config.setOperatorName(streamGraph.getStreamNode(currentNodeId).getOperatorName());
config.setOutEdgesInOrder(transitiveOutEdges);
config.setOutEdges(streamGraph.getStreamNode(currentNodeId).getOutEdges());
for (StreamEdge edge : transitiveOutEdges) {
connect(startNodeId, edge);
}
config.setTransitiveChainedTaskConfigs(chainedConfigs.get(startNodeId));
} else {
chainedConfigs.computeIfAbsent(startNodeId, k -> new HashMap<Integer, StreamConfig>());
config.setChainIndex(chainIndex);
StreamNode node = streamGraph.getStreamNode(currentNodeId);
config.setOperatorName(node.getOperatorName());
chainedConfigs.get(startNodeId).put(currentNodeId, config);
}
config.setOperatorID(currentOperatorId);
if (chainableOutputs.isEmpty()) {
config.setChainEnd();
}
return transitiveOutEdges;
} else {
return new ArrayList<>();
}
}
先解释一下办法结尾创立的 3 个 List 构造:
- transitiveOutEdges:以后算子链在 JobGraph 中的出边列表,同时也是 createChain() 办法的最终返回值;
- chainableOutputs:以后可能链在一起的 StreamGraph 边列表;
- nonChainableOutputs:以后不可能链在一起的 StreamGraph 边列表。
接下来,从 Source 开始遍历 StreamGraph 中以后节点的所有出边,调用 isChainable() 办法判断是否能够被链在一起(这个判断逻辑稍后会讲到)。能够链接的出边被放入 chainableOutputs 列表,否则放入 nonChainableOutputs 列表。 对于 chainableOutputs 中的边,就会以这些边的间接上游为终点,持续递归调用createChain() 办法延展算子链。对于 nonChainableOutputs 中的边,因为以后算子链的延展曾经到头,就会以这些“断点”为终点,持续递归调用 createChain() 办法试图创立新的算子链。也就是说,逻辑打算中整个创立算子链的过程都是递归的,亦即理论返回时,是从 Sink 端开始返回的。
而后要判断以后节点是不是算子链的起始节点。如果是,则调用 createJobVertex()办法为算子链创立一个 JobVertex( 即 JobGraph 中的节点),也就造成了咱们在Web UI 中看到的 JobGraph 成果:
最初,还须要将各个节点的算子链数据写入各自的 StreamConfig 中,算子链的起始节点要额定保留下 transitiveOutEdges。StreamConfig 在后文的物理执行阶段会再次用到。
造成算子链的条件
来看看 isChainable() 办法的代码。
public static boolean isChainable(StreamEdge edge, StreamGraph streamGraph) {
StreamNode upStreamVertex = streamGraph.getSourceVertex(edge);
StreamNode downStreamVertex = streamGraph.getTargetVertex(edge);
StreamOperatorFactory<?> headOperator = upStreamVertex.getOperatorFactory();
StreamOperatorFactory<?> outOperator = downStreamVertex.getOperatorFactory();
return downStreamVertex.getInEdges().size() == 1
&& outOperator != null
&& headOperator != null
&& upStreamVertex.isSameSlotSharingGroup(downStreamVertex)
&& outOperator.getChainingStrategy() == ChainingStrategy.ALWAYS
&& (headOperator.getChainingStrategy() == ChainingStrategy.HEAD ||
headOperator.getChainingStrategy() == ChainingStrategy.ALWAYS)
&& (edge.getPartitioner() instanceof ForwardPartitioner)
&& edge.getShuffleMode() != ShuffleMode.BATCH
&& upStreamVertex.getParallelism() == downStreamVertex.getParallelism()
&& streamGraph.isChainingEnabled();
}
由此可得,上下游算子可能 chain 在一起的条件还是十分刻薄的(陈词滥调了),列举如下:
- 上下游算子实例处于同一个 SlotSharingGroup 中(之后再提);
- 上游算子的链接策略(ChainingStrategy)为 ALWAYS ——既能够与上游链接,也能够与上游链接。咱们常见的 map()、filter() 等都属此类;
- 上游算子的链接策略为 HEAD 或 ALWAYS。HEAD 策略示意只能与上游链接,这在失常状况下是 Source 算子的专属;
- 两个算子间的物理分区逻辑是 ForwardPartitioner ,可参见之前写过的《聊聊Flink DataStream 的八种物理分区逻辑》;
- 两个算子间的 shuffle 形式不是批处理模式;
- 上下游算子实例的并行度雷同;
- 没有禁用算子链。
禁用算子链
用户能够在一个算子上调用 startNewChain() 办法强制开始一个新的算子链,或者调用 disableOperatorChaining() 办法指定它不参加算子链。代码位于 SingleOutputStreamOperator 类中,都是通过扭转算子的链接策略实现的。
@PublicEvolving
public SingleOutputStreamOperator<T> disableChaining() {
return setChainingStrategy(ChainingStrategy.NEVER);
}
@PublicEvolving
public SingleOutputStreamOperator<T> startNewChain() {
return setChainingStrategy(ChainingStrategy.HEAD);
}
如果要在整个运行时环境中禁用算子链,调用 StreamExecutionEnvironment.disableOperatorChaining() 办法即可。
物理打算中的算子链
在 JobGraph 转换成 ExecutionGraph 并交由 TaskManager 执行之后,会生成调度执行的根本工作单元 ——StreamTask,负责执行具体的 StreamOperator 逻辑。在StreamTask.invoke() 办法中,初始化了状态后端、checkpoint 存储和定时器服务之后,能够发现:
operatorChain = new OperatorChain<>(this, recordWriters);
headOperator = operatorChain.getHeadOperator();
结构出了一个 OperatorChain 实例,这就是算子链在理论执行时的状态。解释一下OperatorChain 中的几个次要属性。
private final StreamOperator<?>[] allOperators;
private final RecordWriterOutput<?>[] streamOutputs;
private final WatermarkGaugeExposingOutput<StreamRecord<OUT>> chainEntryPoint;
private final OP headOperator;
- headOperator:算子链的第一个算子,对应 JobGraph 中的算子链起始节点;
- allOperators:算子链中的所有算子,倒序排列,即 headOperator 位于该数组的开端;
- streamOutputs:算子链的输入,能够有多个;
- chainEntryPoint:算子链的“入口点”,它的含意将在后文阐明。
由上可知,所有 StreamTask 都会创立 OperatorChain。如果一个算子无奈进入算子链,也会造成一个只有 headOperator 的单个算子的 OperatorChain。 OperatorChain 构造方法中的外围代码如下。
StreamEdge outEdge = outEdgesInOrder.get(i);
RecordWriterOutput<?> streamOutput = createStreamOutput(
recordWriters.get(i),
outEdge,
chainedConfigs.get(outEdge.getSourceId()),
containingTask.getEnvironment());
this.streamOutputs[i] = streamOutput;
streamOutputMap.put(outEdge, streamOutput);
}
// we create the chain of operators and grab the collector that leads into the chain
List<StreamOperator<?>> allOps = new ArrayList<>(chainedConfigs.size());
this.chainEntryPoint = createOutputCollector(
containingTask,
configuration,
chainedConfigs,
userCodeClassloader,
streamOutputMap,
allOps);
if (operatorFactory != null) {
WatermarkGaugeExposingOutput<StreamRecord<OUT>> output = getChainEntryPoint();
headOperator = operatorFactory.createStreamOperator(containingTask, configuration, output);
headOperator.getMetricGroup().gauge(MetricNames.IO_CURRENT_OUTPUT_WATERMARK, output.getWatermarkGauge());
} else {
headOperator = null;
}
// add head operator to end of chain
allOps.add(headOperator);
this.allOperators = allOps.toArray(new StreamOperator<?>[allOps.size()]);
首先会遍历算子链整体的所有出边,并调用 createStreamOutput() 办法创立对应的上游输入 RecordWriterOutput。而后就会调用 createOutputCollector() 办法创立物理的算子链,并返回 chainEntryPoint,这个办法比拟重要,局部代码如下。
StreamTask<?, ?> containingTask,
StreamConfig operatorConfig,
Map<Integer, StreamConfig> chainedConfigs,
ClassLoader userCodeClassloader,
Map<StreamEdge, RecordWriterOutput<?>> streamOutputs,
List<StreamOperator<?>> allOperators) {
List<Tuple2<WatermarkGaugeExposingOutput<StreamRecord<T>>, StreamEdge>> allOutputs = new ArrayList<>(4);
// create collectors for the network outputs
for (StreamEdge outputEdge : operatorConfig.getNonChainedOutputs(userCodeClassloader)) {
@SuppressWarnings("unchecked")
RecordWriterOutput<T> output = (RecordWriterOutput<T>) streamOutputs.get(outputEdge);
allOutputs.add(new Tuple2<>(output, outputEdge));
}
// Create collectors for the chained outputs
for (StreamEdge outputEdge : operatorConfig.getChainedOutputs(userCodeClassloader)) {
int outputId = outputEdge.getTargetId();
StreamConfig chainedOpConfig = chainedConfigs.get(outputId);
WatermarkGaugeExposingOutput<StreamRecord<T>> output = createChainedOperator(
containingTask,
chainedOpConfig,
chainedConfigs,
userCodeClassloader,
streamOutputs,
allOperators,
outputEdge.getOutputTag());
allOutputs.add(new Tuple2<>(output, outputEdge));
}
// 以下略......
}
该办法从上一节提到的 StreamConfig 中别离取出出边和链接边的数据,并创立各自的 Output。出边的 Output 就是将数据发往算子链之外上游的 RecordWriterOutput,而链接边的输入要靠 createChainedOperator() 办法。
private <IN, OUT> WatermarkGaugeExposingOutput<StreamRecord<IN>> createChainedOperator(
StreamTask<?, ?> containingTask,
StreamConfig operatorConfig,
Map<Integer, StreamConfig> chainedConfigs,
ClassLoader userCodeClassloader,
Map<StreamEdge, RecordWriterOutput<?>> streamOutputs,
List<StreamOperator<?>> allOperators,
OutputTag<IN> outputTag) {
// create the output that the operator writes to first. this may recursively create more operators
WatermarkGaugeExposingOutput<StreamRecord<OUT>> chainedOperatorOutput = createOutputCollector(
containingTask,
operatorConfig,
chainedConfigs,
userCodeClassloader,
streamOutputs,
allOperators);
// now create the operator and give it the output collector to write its output to
StreamOperatorFactory<OUT> chainedOperatorFactory = operatorConfig.getStreamOperatorFactory(userCodeClassloader);
OneInputStreamOperator<IN, OUT> chainedOperator = chainedOperatorFactory.createStreamOperator(
containingTask, operatorConfig, chainedOperatorOutput);
allOperators.add(chainedOperator);
WatermarkGaugeExposingOutput<StreamRecord<IN>> currentOperatorOutput;
if (containingTask.getExecutionConfig().isObjectReuseEnabled()) {
currentOperatorOutput = new ChainingOutput<>(chainedOperator, this, outputTag);
}
else {
TypeSerializer<IN> inSerializer = operatorConfig.getTypeSerializerIn1(userCodeClassloader);
currentOperatorOutput = new CopyingChainingOutput<>(chainedOperator, inSerializer, outputTag, this);
}
// wrap watermark gauges since registered metrics must be unique
chainedOperator.getMetricGroup().gauge(MetricNames.IO_CURRENT_INPUT_WATERMARK, currentOperatorOutput.getWatermarkGauge()::getValue);
chainedOperator.getMetricGroup().gauge(MetricNames.IO_CURRENT_OUTPUT_WATERMARK, chainedOperatorOutput.getWatermarkGauge()::getValue);
return currentOperatorOutput;
}
咱们一眼就能够看到,这个办法递归调用了上述 createOutputCollector() 办法,与逻辑打算阶段相似,通过一直延长 Output 来产生 chainedOperator(即算子链中除了headOperator 之外的算子),并逆序返回,这也是 allOperators 数组中的算子程序为倒序的起因。
chainedOperator 产生之后,将它们通过 ChainingOutput 连接起来,造成如下图所示的构造。
图片来自:http://wuchong.me/blog/2016/05/09/flink-internals-understanding-execution-resources/
最初来看看 ChainingOutput.collect() 办法是如何输入数据流的。
@Override
public void collect(StreamRecord<T> record) {
if (this.outputTag != null) {
// we are only responsible for emitting to the main input
return;
}
pushToOperator(record);
}
@Override
public <X> void collect(OutputTag<X> outputTag, StreamRecord<X> record) {
if (this.outputTag == null || !this.outputTag.equals(outputTag)) {
// we are only responsible for emitting to the side-output specified by our
// OutputTag.
return;
}
pushToOperator(record);
}
protected <X> void pushToOperator(StreamRecord<X> record) {
try {
// we know that the given outputTag matches our OutputTag so the record
// must be of the type that our operator expects.
@SuppressWarnings("unchecked")
StreamRecord<T> castRecord = (StreamRecord<T>) record;
numRecordsIn.inc();
operator.setKeyContextElement1(castRecord);
operator.processElement(castRecord);
}
catch (Exception e) {
throw new ExceptionInChainedOperatorException(e);
}
}
可见是通过调用链接算子的 processElement() 办法,间接将数据推给上游解决了。也就是说,OperatorChain 齐全能够看做一个由 headOperator 和 streamOutputs组成的单个算子,其外部的 chainedOperator 和 ChainingOutput 都像是被黑盒遮蔽,同时没有引入任何 overhead。
买通了算子链在执行层的逻辑,看官应该会明确 chainEntryPoint 的含意了。因为它位于递归返回的起点,所以它就是流入算子链的起始 Output,即上图中指向 headOperator 的 RecordWriterOutput。
文章转载自简书,作者:LittleMagic。
原文链接:https://www.jianshu.com/p/799744e347c7
发表回复